Subject Code: I/BCA/102

Booklet No

I/BCA/102

2015

(1st Semester)

BACHELOR OF COMPUTER APPLICATION

Paper No.: BCA-102

[Mathematics—I (Bridge Course)]

(New Course)

Full Marks: 75

Time: 3 hours

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

- 1. (a) Evaluate $(\sqrt{2}+1)^6+(\sqrt{2}-1)^6$ using binomial theorem.
 - (b) A bag contains ₹ 187 in the form of 1-rupee, 50-paise and 10-paise coins in the ratio of 3:4:5. Find the number of each type of coins.
 - (c) What must be added to each of the numbers 9, 17, 21, 37 so that the new numbers are in proportion?

G16/173a

(Turn Over)

OR

- 2. (a) There are 20 boys in a class. Their average weight is 50 kg. When one boy leaves the class, the average reduces by 80 gram. Find the weight of the boy who left the class.
 - (b) Find (i) the greatest 4-digit number, and (ii) the smallest 4-digit number so that they are exactly divisible by 12, 15, 20 and 35.
 - (c) Find the 10th term of $\left(2x^2 + \frac{1}{x}\right)^{12}$.
- 3. (a) Write the first 5 terms of the sequence $a_n = (-1)^{n-1} \times 2^{n+1}$ 3
 - (b) If the 9th term of an AP is 0, prove that its 29th term is double of the 19th term.
 - (c) Deduce the formula $S_n = \{2a + (n-1)d\}$ for the AP where n is the number of terms, a is the first element and d is the common difference.

OR

4. (a) Find the 10th and nth term of the geometric progression (GP)

12, 4,
$$\frac{4}{3}$$
, $\frac{4}{9}$, ...

G16/173a

(Continued)

5

4

4

(b) Find three numbers in GP whose sum is 13 and the sum of whose squares is 91.

4

(c) Explain the relation among arithmetic mean (AM), geometric mean (GM) and harmonic mean (HM) along with examples.

5

5. (a) Construct a matrix whose elements are given by

$$a_{ij} = \frac{1}{2}|5i - 3j|$$

(b) Express the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$ as the sum of symmetric and skew-symmetric matrix.

4

(c) By using elementary row operation, find the inverse of the matrix $\begin{bmatrix} 6 & 7 \\ 8 & 9 \end{bmatrix}$.

4

OR

6. (a) Find the minors of the determinant

$$A = \begin{vmatrix} 1 & -3 & 2 \\ 4 & -1 & 2 \\ 3 & 5 & 2 \end{vmatrix}$$

3

6/173a

(Turn Over)

(b) Evaluate

Using the properties of determinant, (c) prove that

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \end{vmatrix} = (a-b)(b-c)(c-a)$$

5

(a) Differentiate cot x from the 1st principle. 6

(b) Differentiate
$$\frac{1+\sin x}{1-\sin x}$$
.

6

Differentiate $\sin 2x \cos 3x$. (c)

3

OR

(a) Evaluate

$$\int \frac{(3x^4 - 5x^3 + 4x^2 - x + 2)}{x^3} \, dx$$

3

(b) Evaluate $\int \sec^{-1} x dx$.

3

(c) Evaluate $\int x \cos^3 x \sin x dx$.

5

(d) Evaluate
$$\int \frac{x^8}{(1-x^3)^{1/3}}.$$

4

* * *

2015

(1st Semester)

BACHELOR OF COMPUTER APPLICATION

Paper No.: BCA-102

[Mathematics—I (Bridge Course)]

(New Course)

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

Section—I

(Marks: 15)

- Put a Tick (✓) mark against the correct answer in the brackets provided:

 1×10=10
 - (a) Prime number means
 - (i) a number that is an odd number ()
 - (ii) a number divisible by 3 ()
 - (iii) a number that has two factors ()
 - (iv) a number not divisible by even number ()

(b)	Divisibility means
	(i) numerator and denominator must be same (-)
	(ii) remainder must be 1 ()
	(iii) remainder must be 0 ()
	(iv) denominator must be bigger than numerator ()
(c)	By adding the terms of a sequence, we get a/an
	(i) arithmetic progression ()
	(ii) geometric progression ()
	(iii) series ()
	(iv) arithmetic mean ()
(d)	The general term of an AP is given by
	(i) $a + (1-n)d$ ()
	(ii) $\frac{(n-1)d}{a}$ ()
	(iii) $a + (n-1)d$ ()
	(iv) None of the above ()

I/BCA/102/173

(e)	For	a	2×2	matrix	given	by	$a_{ij}=(i+2j),$	the
	element a_{22}			is		J	g = (s + 2)	CITC.

- (i) 1 ()
- (ii) 3 ()
- (iii) 5 ()
- (iv) 6 ()

(f) The value of
$$\begin{vmatrix} -4 & 5 \\ -1 & -5 \end{vmatrix}$$
 is

- (i) 15 ()
- (ii) 25 ()
- (iii) 35 ()
- (iv) 45 ()

(g) The value of $\lim_{x\to 0} \sin x$ is

- (i) 1 ()
- (ii) 2 ()
- (iii) 3 ()
- (iv) 0 ()

I/BCA/102/173

(h) The value of $\frac{d}{dx}(x^n)$ is

- (i) x^{n-1} ()
- (iii) nx^{n+1} ()
- (iv) nx^{n-1}

In the AP 7, 13, 19, ..., 205, we have

- (i) 32 terms
- (ii) 33 terms ()
 (iii) 34 terms ()
- (iii) 34 terms
- (iv) 35 terms

The value of $\int \left(\frac{\log x}{x}\right)$ is (j)

- (i) $\frac{1}{x}\log x + c$ ()
- (ii) $\sin x^2 + c$ ()
- (iii) $x \log x + c$ ()
- (iv) $\frac{1}{2}(\log x)^2 + c$ ()

I/BCA/102/173

2. Tick (1) either True or False:

1×5=5

(a) The value of $\frac{d}{dx}(\sin^{-1}x)$ is $\frac{1}{\sqrt{1-x^2}}$.

True () / False ()

(b) All the diagonal elements are zeros in a diagonal matrix.

True () / False ()

(c) Integration is the inverse of differentiation.

True () / False ()

(d) The sum of the series 5, 9, 13, 17, ... up to 23 terms is 1127.

True () / False ()

(e) If $y = \frac{e^x}{x}$, then the value of $\frac{dy}{dx}$ is $\frac{e^x(x-1)}{x^2}$.

True () / False ()

SECTION—II

(Marks: 10)

Answer the following questions:

 $2\times5=10$

1. Differentiate between HCF and LCM.

(') endit | leading .

2. Which one is greater from the following?

$$\frac{8}{9}$$
 and $\frac{2}{3}$

3. Explain skew-symmetric matrix.

4. If
$$5A = \begin{bmatrix} 5 & 10 & -15 \\ 2 & 3 & 4 \\ 1 & 0 & -5 \end{bmatrix}$$
, find A.

5. Differentiate $y = \sin x^3$.

+++

G16-250/173

in I/BCA/102