2015

(1st Semester)

BACHELOR OF COMPUTER APPLICATION

Paper No.: BCA-104

(New Course)

(Digital Computer Fundamentals)

Full Marks: 75

Time: 3 hours

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

- 1. (a) Describe the digital computer with a block diagram.
 - (b) Convert the following numbers from the given base to the bases indicated: 6
 - (i) $(71.6875)_{10}$ to binary, octal, and hexadecimal
 - (ii) (254.87)₈ to decimal, binary, and hexadecimal

G16/175a

(Turn Over)

		or	
	(c)	Explain any five digital logic gates with names, graphic symbols and truth tables.	5
	(d)	Perform the subtraction of the following numbers using r's complement:	5
		(i) $(23750 - 768921)_{10}$	
		(ii) $(10111-110001)_2$	
2.	(a)	Simplify the Boolean function $F = xy + x'z + yz$ to a minimum number of	
		literals.	4
	(b)	Express the Boolean function $F = x + y'z$ in a sum of minterms form.	6
		or and or	
	(c)	Find the complements of $F = A(B'C' + BC)$.	4
	(d)	Express the Boolean function $F = AB + A'C$ to a product of maxterms	
	- 0	form.	6
3.	(a)	Simplify the Boolean function $F(w, x, y, z) = \Sigma(0, 1, 2, 5, 8, 9, 10)$ in (i) sum of products, and (ii) product of sums. Draw the logical diagram for each	
		function.	5
	<i>(b)</i>	Explain full subtractor by showing its truth table and implementing using logic	
		gates.	5

G16/175a

(Continued)

Or

	(c)	Explain full adder by showing its truth table and implementing using logic gates.	5
	(d)	What is a decoder? Design a 3-to-8 line decoder showing its truth table.	5
4.	(a)	Explain the working of clock RS flip-flop with logical diagram and characteristic table.	6
	(b)	Explain a shift register with block diagram.	4
		Or	
	(c)	Explain the working of clock T flip-flop with logical diagram and characteristic table.	4
	(d)	Describe a master-slave JK flip-flop with logic diagram.	6
5.	. (a)	Explain briefly the basic symbols for register-transfer logic.	5
	(b)	Explain macrooperations and micro- operations with an example each. Or	5
	(c)	Explain briefly the basic arithmetic microoperations in detail.	5
	(d	Explain logic microoperations and shift microoperations with an example each.	5

2015

(1st Semester)

BACHELOR OF COMPUTER APPLICATION

Paper No.: BCA-104
(New Course)

(Digital Computer Fundamentals)

(PART : A—OBJECTIVE)

(Marks : 25)

The figures in the margin indicate full marks for the questions

SECTION—I

(Marks : 15)

- I. Tick (✓) the correct answer in the brackets provided:

 1×10=10
 - 1. In information transfer from one register to another, the statement $A \leftarrow B$ denotes
 - (a) the transfer of the contents of register B into register A ()
 - (b) a replacement of the contents of register A by the contents of register B ()
 - (c) the contents of the source register B do not change after the transfer
 - (d) All of the above (1)

2. To implement arithmetic microoperation of the statement $F \leftarrow A + B$, we require	1e
(a) one register ()	
(b) two registers ()	
(c) three registers ()	
(d) four registers ()	
 A group of flip-flops sensitive to pulse duration usually called 	n is
(a) a clock pulse ()	
(b) a latch ()	
(c) programmable logic array ()	
(d) encoder ()	
4. The T flip-flop is a single version of	
(a) JK flip-flop ()	
(b) RS flip-flop ()	
(c) D flip-flop ()	
(d) None of the above ()	
I/BCA/104 /175	

5. A decoder converts binary information from n input lines to a maximum of
(a) 2^n output lines ()
(b) 2 ⁿ unique output lines ()
(c) $2^n + 1$ unique output lines ()
(d) $2^n - 1$ unique output lines ()
6. The circuit that checks the parity in the receiver is called
(a) a parity checker ()
(b) a parity generator ()
(c) a parity bit
(d) an error-detection code ()
Note that the second of the se
7. If the dual of an algebraic expression is desired, we simply
(a) interchange OR operator and AND operator ()
(b) replace 1's by 0's and 0's by 1's ()
(c) Both (a) and (b) ()
(d) None of the above ()

I/BCA/104**/175**

8.	Boolean functions expressed as a sum of minterms or product of maxterms are called
	(a) standard products ()
	(b) standard sums ()
	(c) Both (a) and (b) ()
	(d) canonical form ()
9.	What is the minimum number of two-input NAND gates used to perform the function of two input OR gate?
	(a) One NAND gate ()
	(b) Two NAND gates ()
	(c) Three NAND gates ()
	(d) Four NAND gates ()
10.	The code which changes by only one bit as it proceeds from one number to the next is
	(a) decimal code ()
	(b) reflected code ()
	(c) alphanumeric code ()
	(d) error-detection code ()
I/BCA/104	/175

II.	Tick (True (T	\checkmark) whether the \Box) or False (F) :	following	statements	are
		Tas :	Control 1		$1 \times 5 = 5$

1. A buffer circuit is used merely for power amplification.

(T/F)

2. Each combination of the variables in a truth table is called a maxterm.

(T/F)

3. The operations performed on the data stored in registers are called macrooperations.

(T / F)

4. The size of multiplexer is specified by the number of 2^n of its data inputs and the single output.

(T / F)

5. A binary counter with a reverse count is called a binary-down counter.

(T/F)

SECTION—II

(Marks: 10)

III. Answer the following questions:

 $2 \times 5 = 10$

1. What is an instruction code? Write the three instruction code formats.

I/BCA/104/175

plansk ber has an god on o chilo "S to tokkowa

2. What do you mean by overflow?

3. Explain a demultiplexer.

/BCA/104**/175**

4. What are the universal gates? Why are they called so?

3. Explain a describbleren

5. Explain a half adder in detail.

* * *

I/BCA/104