2015 (1st Semester) ## BACHELOR OF COMPUTER APPLICATION Paper No.: BCA-104 (New Course) ### (Digital Computer Fundamentals) Full Marks: 75 Time: 3 hours (PART : B—DESCRIPTIVE) (Marks: 50) The figures in the margin indicate full marks for the questions - 1. (a) Describe the digital computer with a block diagram. - (b) Convert the following numbers from the given base to the bases indicated: 6 - (i) $(71.6875)_{10}$ to binary, octal, and hexadecimal - (ii) (254.87)₈ to decimal, binary, and hexadecimal G16/175a (Turn Over) | | | or | | |----|------------|--|---| | | (c) | Explain any five digital logic gates with names, graphic symbols and truth tables. | 5 | | | (d) | Perform the subtraction of the following numbers using r's complement: | 5 | | | | (i) $(23750 - 768921)_{10}$ | | | | | (ii) $(10111-110001)_2$ | | | 2. | (a) | Simplify the Boolean function $F = xy + x'z + yz$ to a minimum number of | | | | | literals. | 4 | | | (b) | Express the Boolean function $F = x + y'z$ in a sum of minterms form. | 6 | | | | or and or | | | | (c) | Find the complements of $F = A(B'C' + BC)$. | 4 | | | (d) | Express the Boolean function $F = AB + A'C$ to a product of maxterms | | | | - 0 | form. | 6 | | 3. | (a) | Simplify the Boolean function $F(w, x, y, z) = \Sigma(0, 1, 2, 5, 8, 9, 10)$ in (i) sum of products, and (ii) product of sums. Draw the logical diagram for each | | | | | function. | 5 | | | <i>(b)</i> | Explain full subtractor by showing its truth table and implementing using logic | | | | | gates. | 5 | G16/175a (Continued) #### Or | | (c) | Explain full adder by showing its truth table and implementing using logic gates. | 5 | |----|-------|--|---| | | (d) | What is a decoder? Design a 3-to-8 line decoder showing its truth table. | 5 | | 4. | (a) | Explain the working of clock RS flip-flop with logical diagram and characteristic table. | 6 | | | (b) | Explain a shift register with block diagram. | 4 | | | | Or | | | | (c) | Explain the working of clock T flip-flop with logical diagram and characteristic table. | 4 | | | (d) | Describe a master-slave JK flip-flop with logic diagram. | 6 | | 5. | . (a) | Explain briefly the basic symbols for register-transfer logic. | 5 | | | (b) | Explain macrooperations and micro-
operations with an example each.
Or | 5 | | | (c) | Explain briefly the basic arithmetic microoperations in detail. | 5 | | | (d | Explain logic microoperations and shift microoperations with an example each. | 5 | | | | *** | | | | | | | #### 2015 (1st Semester) # BACHELOR OF COMPUTER APPLICATION Paper No.: BCA-104 (New Course) ## (Digital Computer Fundamentals) (PART : A—OBJECTIVE) (Marks : 25) The figures in the margin indicate full marks for the questions SECTION—I (Marks : 15) - I. Tick (✓) the correct answer in the brackets provided: 1×10=10 - 1. In information transfer from one register to another, the statement $A \leftarrow B$ denotes - (a) the transfer of the contents of register B into register A () - (b) a replacement of the contents of register A by the contents of register B () - (c) the contents of the source register B do not change after the transfer - (d) All of the above (1) | 2. To implement arithmetic microoperation of the statement $F \leftarrow A + B$, we require | 1e | |--|------| | (a) one register () | | | (b) two registers () | | | (c) three registers () | | | (d) four registers () | | | A group of flip-flops sensitive to pulse duration usually called | n is | | (a) a clock pulse () | | | (b) a latch () | | | (c) programmable logic array () | | | (d) encoder () | | | 4. The T flip-flop is a single version of | | | (a) JK flip-flop () | | | (b) RS flip-flop () | | | (c) D flip-flop () | | | (d) None of the above () | | | I/BCA/104 /175 | | | 5. A decoder converts binary information from n input lines to a maximum of | |--| | (a) 2^n output lines () | | (b) 2 ⁿ unique output lines () | | (c) $2^n + 1$ unique output lines () | | (d) $2^n - 1$ unique output lines () | | | | 6. The circuit that checks the parity in the receiver is called | | (a) a parity checker () | | (b) a parity generator () | | (c) a parity bit | | (d) an error-detection code () | | Note that the second of se | | 7. If the dual of an algebraic expression is desired, we simply | | (a) interchange OR operator and AND operator () | | (b) replace 1's by 0's and 0's by 1's () | | (c) Both (a) and (b) () | | (d) None of the above () | | | I/BCA/104**/175** | 8. | Boolean functions expressed as a sum of minterms or product of maxterms are called | |-----------|---| | | (a) standard products () | | | (b) standard sums () | | | (c) Both (a) and (b) () | | | (d) canonical form () | | 9. | What is the minimum number of two-input NAND gates used to perform the function of two input OR gate? | | | (a) One NAND gate () | | | (b) Two NAND gates () | | | (c) Three NAND gates () | | | (d) Four NAND gates () | | 10. | The code which changes by only one bit as it proceeds from one number to the next is | | | (a) decimal code () | | | (b) reflected code () | | | (c) alphanumeric code () | | | (d) error-detection code () | | I/BCA/104 | /175 | | II. | Tick (True (T | \checkmark) whether the \Box) or False (F) : | following | statements | are | |-----|---------------|--|-----------|------------|------------------| | | | Tas : | Control 1 | | $1 \times 5 = 5$ | 1. A buffer circuit is used merely for power amplification. (T/F) 2. Each combination of the variables in a truth table is called a maxterm. (T/F) 3. The operations performed on the data stored in registers are called macrooperations. (T / F) 4. The size of multiplexer is specified by the number of 2^n of its data inputs and the single output. (T / F) 5. A binary counter with a reverse count is called a binary-down counter. (T/F) SECTION—II (Marks: 10) III. Answer the following questions: $2 \times 5 = 10$ 1. What is an instruction code? Write the three instruction code formats. I/BCA/104/175 plansk ber has an god on o chilo "S to tokkowa 2. What do you mean by overflow? 3. Explain a demultiplexer. /BCA/104**/175** 4. What are the universal gates? Why are they called so? 3. Explain a describbleren 5. Explain a half adder in detail. * * * I/BCA/104