2011

(1st Semester)

ELECTRONICS

FIRST PAPER

(PART : A—OBJECTIVE)

(Marks : 20)

SECTION—A

(Marks : 5)

Each question carries 1 mark

Answer all questions

Tick (✓) the correct answer in the bracket provided :

1.	The	first three c	olour	bands	of a	resistor	indicate
	(a)	tolerance	() :		6	
	(b)	resistance va	llue	()		
	(c)	reliability	().	e e		
	(d)	decimal mul	tiplier		()		

/26

2.	Working of a transformer essentially depends on					
	(a) mutual inductance ()					
	(b) self-inductance ()					
	(c) magnetic circuit ()					
e.	(d) magnetic flux ()					
	, #					
3.	Power factor of an a.c. circuit equals					
	(a) the cosine of the phase angle ()					
	(b) the tangent of the phase angle ()					
	(c) zero for resistive circuit ()					
25	(d) unity for a relative circuit ()					
4.	According to Kirchhoff's voltage law, the algebraic sum of all IR drops and EMFs in any closed loop of a network is always					
	(a) positive ()					
	(b) negative ()					
	(c) greater than unity ()					
	(d) zero ()					
Inla	6) 106					

5.	For abstracting maximum power from any two given terminals of a circuit, the load resistance across the terminals should be								
	(a)	four times the internal resistance of the network							
	(b)	less than the circuit resistance ()							
	(c)	equal to the circuit resistance when viewed back from the two terminals ()	mc						
	(d)	greater than the circuit resistance ()							

SECTION-B

(Marks: 15)

Each question carries 3 marks

Answer all questions

1. Discuss the factors that control the capacitance of a capacitor.

2. Explain the working of multimeter as voltmeter.

3. Show that $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$ for a series L-C-R resonant circuit.

4. Differentiate between unilateral and bilateral elements giving one example each.

5. Using Norton's theorem, calculate the current flowing through the $12\ \Omega$ resistor in the figure given below :

2011

(1st Semester)

ELECTRONICS

FIRST PAPER

(Electronic Measuring Instruments and Circuit Analysis)

Full Marks: 55

Time: 3 hours

(PART : B—DESCRIPTIVE)

(Marks: 35)

The figures in the margin indicate full marks for the questions

UNIT-I

- 1. (a) What is a variable resistor? Describe briefly wire-wound resistor and carbon composition resistor. 1+2+2
 - (b) What do you mean by power rating of a resistor?

Or

(a) Describe the construction of a ceramic capacitor. Why is ceramic capacitor preferred over mica or paper capacitor? 2+2

12G-100/26a

(Turn Over)

2

(b) Compare air-core, iron core and ferrite core inductors.

3

UNIT-II

2. Describe in detail the construction and working principle of a transformer. Mention two uses of a transformer. 2+3+2

Or

Discuss the construction, principle of working and some applications of cathode ray oscilloscope (CRO). 2+3+2

UNIT-III

- 3. (a) What is j-operator? Briefly explain the significance of j-operator. 1+3
 - (b) Define filter. Differentiate between highpass and low-pass filter. 1+2

Or

- (a) Obtain an expression between current and voltage in an alternating circuit consisting of resistence R and inductance L in series.
- (b) A coil of resistance 60 Ω and inductance 3 henry is connected in series with a capacitor of 4 μF and an a.c. supply of 200 volts and 50 c/s. Calculate (i) the impedance in the circuit, and (ii) phase difference between current and voltage. 2+2

UNIT-IV

- 4. (a) What are active and passive elements?

 Give one example each. 2+2
 - (b) How will you convert a voltage source into a current source?

Or

- (a) State and explain ladder method of network analysis.
- (b) Define branch and node. Briefly explain nodal analysis. 1+2

UNIT-V

- 5. (a) State and explain Thevenin's theorem. 1+3
 - (b) Calculate the value of load resistance R_L to which maximum power may be transferred from the circuit below. Also find the maximum power transferred: 2+1

3

3

4

Or ·

- (a) State and explain superposition theorem. 1+3
- (b) Derive the condition for transfer of maximum power from a source to a load. 3
