2013 (1st Semester) #### **ELECTRONICS** FIRST PAPER (Electronic Measuring Instruments and Circuit Analysis) (PART : A—OBJECTIVE) (Marks : 20) Answer all questions SECTION—I (Marks: 5) Each question carries 1 mark Tick (✓) the correct answer in the brackets provided: | 1. | No colour | coding in | a resistor | indicates | the | tolerance | of | |----|-----------|-----------|------------|-----------|-----|-----------|----| |----|-----------|-----------|------------|-----------|-----|-----------|----| | (a) | 5% | (|) | |-----|-----|---|-----| | (b) | 10% | | () | | (c) | 20% | | () | | | | | | | 2. A device that converts energy in one form to energy in another form is | |---| | (a) transformer () | | (b) transducer () | | (c) thermocouple () | | (d) thermistor () | | | | 3. Unit of impedance is in | | (a) ohm () | | (b) henry () | | (c) mho () | | (d) farad () | | 4. Kirchhoff's voltage law (KVL) is concerned with | | (a) IR drops () | | (b) battery EMF's () | | (c) junction voltage () | | (d) Both (a) and (b) () | www.gzrsc.edu.in I/ELEC (i)/27 ## 5. Total resistance of the network is - (a) 6 ohm () - (b) $\frac{16}{5}$ ohm (- (c) $\frac{11}{3}$ ohm () - (d) $\frac{11}{4}$ ohm () ## SECTION—II (Marks: 15) # Each question carries 3 marks 1. Briefly explain the sharpness of resonance circuit. 2. A power transformer has 200 primary turns and 800 secondary turns. If the primary voltage is 230 volts and full-load primary current is 20 amperes, find the secondary voltage and current. 3. Describe how a bandpass filter works. **4.** Find the current in the branch *AB* of the network using nodal analysis for the circuit **5.** A generating device has an impedance Z_i and is connected to a load by a line of Z_R . At what load will maximum power transfer received by the load when adjusted for maximum power? $Z_i = 1.5 - j1$; $Z_e = 1.5 - j4$; V = 30V #### 2013 (1st Semester) #### **ELECTRONICS** #### FIRST PAPER # (Electronic Measuring Instruments and Circuit Analysis) Full Marks: 55 Time: 2 hours (PART : B—DESCRIPTIVE) (Marks: 35) The figures in the margin indicate full marks for the questions ### UNIT-I - 1. (a) What are the different types of inductors? 2 - (b) Define inductance and derive an expression for mutual inductance of two coils. 2+3=5 Or (a) Describe the construction of ceramic capacitor. Why is a ceramic capacitor preferred over a mica or a paper capacitor? 2+2=4 14G-150/27a (Turn Over) (b) Compare among wire-wound, carbon-film and carbon-composition resistors.3UNIT—II **2.** Describe the principle of working of cathoderay oscilloscope. Or - (a) Can you operate a transformer on a constant DC voltage? Describe how an auto-voltage transformer works. 1+4=5 - (b) What is a multimeter? Define the sensitivity of a multimeter. 1+1=2 UNIT-III 3. Derive an expression of alternating current through a series LRC circuit. Or What do you mean by j-operator? Derive the impedance of an RC circuit. 2+5=7 UNIT-IV - 4. (a) What do you mean by 'node' and 'loop'? - (b) What is loop matrix? How will you express the complete loop matrix having 3 loops and 4 branches? 2+3=5 Or - (a) How will you convert a current source into a voltage source? - (b) State and explain the ladder method of network analysis. UNIT-V - **5.** (a) State Thevenin's theorem and prove it in case of a two-terminal network. - (b) Show that the Norton's equivalent circuit can be found from the Thevenin's equivalent circuit. Or - (a) State the maximum power transfer theorem and give its applications. 3+1=4 - (b) Explain the superposition theorem. *** 7 3 4 4 3 3