EL/II/EC/03 (CBCS)

2017

(CBCS)

(2nd Semester)

ELECTRONICS

SECOND PAPER

(Semiconductor Physics)

Full Marks :75

Time: 3 hours

(PART : A - OBJECTIVE) (Marks:25)

The figures in the margin indicate full marks for the questions

SECTION – A (Marks:10)

Put a Tick (\checkmark) mark against the corr	ct answer in the brackets	s provided for it :	1×10 =10
---	---------------------------	---------------------	----------

1. Silicon has Z = 14. Its outermost orbit is							
	(a) partially filled	()	(b) half-filled		()
	(c) completely occupied	1 ()	(d) empty		()
2.	2. Addition of impurity to a pure semiconductor is called						
	(a) rectification	()	(b) drift current		()
	(c) doping	()	(d) extrinsic semicondu	actor	()
3.	3. The knee voltage of a diode is approximately equal to						
	(a) applied voltage ()		(b) breakdown voltage		()
	(c) forward voltage ()		(d) barrier potential		()
4.	4. The ripple factor of a full-wave rectifier is						
	(a) 2 ()		(b) 1.21 ()		
	(c) 2.5 ()		(d) 0.48 ()		
5.	5. When used in a circuit, Zener diode is always						
	(a) forward biased ()		(b) connected in series	()	
	(c) reversed biased ()		(d) overheated	()	
6.	6. A semiconductor device that resembles a voltage variable capacitor is known as						
	(a) tunnel diode	(() (b) varactor diode		e	()

(2)

7. The operating point(a) quiescent point(c) saturation point	of a tr ((ansistor is a))	(b) cut-off	point ection point	(())
8. The output impedan	ce of a	a transistor i	S			
(a) low	()	(b) high		()
(c) very low	()	(d) zero		()
9. The maximum distor	rtion i	s found in				
(a) class A amplifier	()	(b) class I	3 amplifier	()
(c) class C amplifier	()	(d) class A	AB amplifier	()
10. A transistor convert	s					
(a) d.c. power to a.c.	power	r	()		
(b) a.c. power to d.c.	powe	r	()		
(c) high resistance t	o low	resistance	()		
(d) low resistance to	high 1	resistance	()		
	SECTION – B (<i>Marks</i> : 15)					

Answer the following questions:

1. Explain formation of depletion region in a p-n junction.

Or

Explain the capacitive effects of junction diode.

2. A crystal diode having internal resistance $r_f = 20 \ \Omega$ is used for half-wave rectification. If the applied voltage V = 50 sin ω t and load resistance R_L = 800 Ω , find the efficiency of rectification.

Or

What are the advantages of full-wave rectification over half-wave rectification.

3. Explain how Zener diode can be used as a peak clipper.

Or

What are the advantages of PIN diode over p-n junction diode?

4. What is transistor? Write the symbols of *p*-*n*-*p* and *n*-*p*-*n* transistors.

Or

What is thermal runaway? How will you avoid this in a transistor?

5. Explain bandwidth of an amplifier with necessary diagram.

Or

Draw a frequency response curve for RC coupled transistor amplifier.

EL/II/EC/03 (CBCS)**/273**

 $3 \times 5 = 15$

(PART: B – DESCRIPTIVE) (Marks: 50)

The figures in the margin indicate full marks for the questions

1. <i>(a)</i> Describe with a diagram the atomic model proposed by Niels Bohr. W mean by valence electrons?	/hat do you 3+1 = 4				
(b) What is energy band? Classify solids in terms of energy band.	1+3=4				
(c) Determine the electronic distribution of xenon atom having $Z = 54$.	2				
Or					
2. <i>(a)</i> What are intrinsic and extrinsic semiconductors? How is <i>p</i> -type of extri semiconductors formed?	nsic 2+3=5				
(b) Explain the V-I characteristics of P-N junction diode with suitable diagra	ams. 4				
(c) What is Zener breakdown?	1				
3. <i>(a)</i> What do you understand by the d.c. and a.c. resistances of a semiconductor diode? How will you determine them?	uctor 2+3=5				
<i>(b)</i> Explain with a diagram how semiconductor diode can be used as a full-rectifier. Show that its maximum efficiency is 81.2%.	-wave 2+3= 5				
Or					
4. (a) What is ripple factor? Derive the value of ripple factor for half-wave rect	ifier. 1+3= 4				
(b) Describe the filtering action of capacitor-input filter.	2				
(c) Explain different equivalent circuits of a semiconductor diode.	4				
5. (a) What is Zener diode? Explain how Zener diode maintains constant vol the load.	ltage across 1+3=4				
<i>(b)</i> What is tunneling effect? Explain the <i>V-I</i> characteristics of tunnel diod some important applications of tunnel diode.	de. Mention 1+3+2=6				
Or					
6. (a) Describe the construction, resistance curve and applications of thermis	otor. 2+2+2=6				
(b) What is photodiode? How is current reduced to zero in photodiode?	2+2=4				
7. <i>(a)</i> What is meant by transistor biasing? What are the essentials of the transistor biasing circuit?	nsistor 1+3=4				
(b) Explain with a diagram, the input characteristics of a CE transistor. Sta	ate the				
advantages of a CE mode over other mode of operations.	3+3=6				
EL/II/EC/03 (CBCS) /273					

EL/II/EC/03 (CBCS)**/273**

8. (a) Show that $\beta = \frac{\alpha}{1 - \alpha}$

with suitable diagrams.

where the symbols have their usual meanings.
(b) Explain with a diagram the leakage current in CB circuit of a transistor.
(c) Discuss the transistor action in *n-p-n* mode with a diagram.
(a) Explain how transistor can be used as an amplifier. What do you mean by operating point of a transistor circuit?
(b) Describe class A, class B, class C, and class AB amplifiers. Illustrate your answer

Or

- 10.(*a*) Explain in brief the frequency response curve of an amplifier. What do you mean by resonant frequency? 3+1=4
 - (b) Write down the steps for construction of d.c. load line. Also explain the terms 'cutoff point' and 'saturation point'. 3+2=5
 - (c) Define bandwidth of an amplifier.

6

1