MATH/V/05

2017

(5th Semester)

MATHEMATICS

Paper : MATH-351

(Computer-oriented Numerical Analysis)

Full Marks: 75

Time : 3 hours

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

Unit—I

- **1.** (a) Define factorial polynomial. Express $f(x) \ x^3 \ 3x^2 \ 5x \ 7$ in terms of factorial polynomial taking $h \ 2$ and find its differences. 1+3+1=5
 - (b) Express any value of y in terms of y_n and the backward differences of y_n . Find the value of y(1) if y(0) 2, y(1) 9, y(2) 28, y(3) 65, y(4) 126 and y(5) 217. 2+3=5

(2)

- **2.** (a) Find a real root of the equation $e^x \ 3x \ 0$ correct up to four decimal places by the method of successive iteration.
 - (b) Find the positive real roots of the equation $x \log_{10} x$ 1 2 0 by regula-falsi method.

Unit—II

- **3.** (a) Obtain Newton's backward interpolation formula with equal intervals of the argument.
 - (b) Find a polynomial of degree four which takes the values :

x	2	4	6	8	10
y	0	0	1	0	0

- **4.** (a) Obtain Lagrange's interpolation formula for unequal intervals.
 - (b) Using Newton's divided difference formula, find the values of f(2) and f(8)from the following table :

x	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

8G**/222a**

(Turn Over) 8G/222a WWW.GZISC.edu.in

(Continued)

5

5

6

4

6

4

Unit—III

- 5. (a) Solve the following system of equations by Gaussian elimination method : 5

 - (b) Explain the difference between Gauss elimination and Gauss-Jordan elimination methods. Write an algorithm for Gauss-Jordan elimination method.
- 6. (a) Solve, by Gauss-Seidel method, the following system of equations: 4
 - $2x \ y \ 3$ $2x \ 3y \ 5$
 - (b) By Routh's method, solve the following system of simultaneous equations : 6

x y z 3 2x y 3z 16 3x y z 3

Unit—IV

7. (a) Using Newton's forward difference interpolation formula, find the derivatives of y f(x) passing through n 1 points up to third-order derivatives. 5

(b) Evaluate

$${}^{1}_{0}\frac{dx}{1-x^{2}}$$

using trapezoidal rule with h = 0 2. Hence, obtain an approximate value of .

8. (a) Find the first two derivatives of $y = x^{1/3}$ at x = 50 and x = 56 from the following table :

	x	50	51	52	53	54	55	56
y	$\sqrt[3]{x}$	3.6840	3.7084	3.7325	3.7563	3.7798	3.8030	3.8259

(b) Evaluate

$$\int_{0}^{/2} \sqrt{\sin d}$$

using Simpson's one-third rule taking ten equal intervals.

5

5

5

Unit—V

9. (a) Using Taylor series method, find the values of $y(1 \ 1)$ and $y(1 \ 2)$ correct up to four decimal places given below : 5

$$\frac{dy}{dx} \quad xy^{1/3}, y(1) \quad 1$$

(Continued)

8G**/222a**

(Turn Over) 8G/222a

(5)

(b) Solve

$$\frac{dy}{dx}$$
 x y

given y(0) 1. Obtain the values of $y(0 \ 1)$ and $y(0 \ 2)$ using Picard's method. 5

10. (*a*) Solve the differential equation

$$\frac{dy}{dx}$$
 1 y

given y(0) 0. Using modified Euler's method, find $y(0 \ 1)$ and $y(0 \ 2)$.

(b) Apply the fourth-order Runge-Kutta method to find y(0 3), given that

$$\frac{dy}{dx} \quad y \quad xy^2 \quad 0, \ y(0) \quad 1$$

by taking $h = 0 \ 1$ (correct up to four decimal places).

 $\star\star\star$

8G-300/222a

www.gzrsc.edu.in

4

6

Subject Code : MATH/V/05

.....

<u>i</u>_____j

Booklet No. A

	Date Stamp
To be filled in by the Candidate	
DEGREE 5th Semester (Arts / Science / Commerce /) Exam., 2017 Subject	
Paper	To be filled in by the Candidate
INSTRUCTIONS TO CANDIDATES	DEGREE 5th Semester
1. The Booklet No. of this script should be quoted in the answer script meant for descriptive type questions and vice versa.	(Arts / Science / Commerce /) Exam., 2017
2. This paper should be ANSWERED FIRST and submitted within <u>1 (one) Hour</u> of the commencement of the Examination.	Roll No Regn. No
3. While answering the questions of this booklet, any cutting, erasing, over- writing or furnishing more than one answer is prohibited. Any rough work,	Subject Paper

writing e answer is if required, should be done only on the main Answer Book. Instructions given in each question should be followed for answering that question only.

Descriptive Type Booklet No. B

Signature of Scrutiniser(s) Signature of Examiner(s) Signature of Invigilator(s)

!_____i

/222

MATH/V/05

2017

(5th Semester)

MATHEMATICS

Paper : MATH-351

(Computer-oriented Numerical Analysis)

(PART : A—OBJECTIVE)

(Marks: 25)

SECTION—A

(Marks: 10)

Each question carries 1 mark

Put a Tick \square mark against the correct answer in the box provided :

- 1. Which of the following relations is true?
 - (a) E 1 \Box
 - (b) $E \quad 1 \qquad \Box$
 - (c) $E \quad 1 \quad \Box$
 - (d) E 1 \Box

/222

- (2)
- **2.** A polynomial of odd degree with real coefficients always has
 - (a) at least no real roots \Box
 - (b) at least one real root \Box
 - (c) at least two real roots \Box
 - (d) at least one real root and one imaginary root \Box
- **3.** A forward difference table contains *n* arguments, then the highest-order differences in the table is
 - (a) $n \ 1 \square$
 - (b) n □
 - (c) $n \ 1 \ \Box$
 - (d) None of the above \Box
- **4.** Lagrange's interpolation polynomial for the data f(0) = 0, f(1) = 0 and f(3) = 6 is
 - (a) $(x \ 1)(x \ 1)$
 - (b) x^2 1 \Box
 - (c) $x(x \ 1)$
 - (d) $x(x \ 1)$

- **5.** If *A* is the coefficient matrix obtained from a system of simultaneous equations, then the system has a single and unique solution if and only if the determinant of *A* is
 - (a) equal to zero \Box
 - (b) not equal to zero \Box
 - (c) greater than zero \Box
 - (d) smaller than zero \Box
 - **6.** Gauss-Jordan elimination method reduces the coefficient matrix of the simultaneous equations into
 - (a) column matrix \Box
 - (b) lower triangular matrix \Box
 - (c) upper triangular matrix \Box
 - (d) identity matrix \Box

7. If f(3) = 0, f(4) = 2 and f(5) = 6, then f(3) is equal to

- (a) 0 \Box
- (b) 1 🗆
- (c) 2 🗆
- (d) 3 🗆

(4)

8. The value of

$$\frac{3}{6}\sin x\,dx$$

using trapezoidal rule by taking $h = \frac{1}{6}$ is

(a)
$$\frac{1}{24}$$
 \Box
(b) $\frac{1}{32}$ \Box
(c) $\frac{(1\sqrt{3})}{24}$ \Box
(d) $\frac{(1\sqrt{3})}{12}$ \Box

9. Given $y = y^2$ and y(0) = 1. The value of y at x = 1 taking h = 1 using Euler's method is

- (a) 0 □
- *(b)* −2 □
- (c) 1 🗆
- (d) 2 □
- **10.** The Runge-Kutta method of second order is exactly similar to
 - (a) Picard's method \Box
 - (b) modified Euler's method \Box
 - (c) Euler's method \Box
 - (d) Taylor series method \Box

MATH/V/05**/222**

www.gzrsc.edu.in

(5)

SECTION-B

(*Marks* : 15)

Each question carries 3 marks

1. Establish the relation between operators E and \therefore

MATH/V/05**/222**

www.gzrsc.edu.in

(6)

2. Construct the divided difference table of $f(x) = x^3 = x = 2$ for the arguments 1, 3, 6, 11.

(7)

3. Solve the given equations by Gauss-Jordan method :

$$\begin{array}{cccc} 2x & y & 3 \\ 7x & 3y & 4 \end{array}$$

MATH/V/05**/222**

www.gzrsc.edu.in

(8)

4. Evaluate

$$\int_{1}^{3} x^{4} dx$$

using Simpson's one-third rule by dividing the range into four equal intervals.

(9)

5. Using Milne's method, find $y(4 \ 4)$, given $5xy \ y^2 \ 2 \ 0$, $y_1 \ 0 \ 0493$, $y_2 \ 0 \ 0467$ and $y_3 \ 0 \ 0452$.

8G—300**/222**

MATH/V/05