2017

(CBCS)
(2nd Semester)

MATHEMATICS

SECOND PAPER

(Algebra)

Full Marks : 75
Time : 3 hours
(PART : B—DESCRIPTIVE)
(Marks : 50)
The figures in the margin indicate full marks for the questions

Answer one question from each Unit
Unit-I

1. (a) State Cayley-Hamilton theorem. Find the inverse of

$$
A=\left(\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right)
$$

using characteristic polynomial. $1+4=5$
(b) Solve the system of the following equations

$$
\begin{aligned}
x+y+z & =9 \\
2 x+5 y+7 z & =52 \\
2 x+y-z & =0
\end{aligned}
$$

2. (a) Prove that every non-singular matrix is invertible.
(b) Reduce the matrix

$$
\left[\begin{array}{rrrr}
0 & 1 & -3 & 1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

to be normal form and hence obtain its rank.
UnIT—II
3. (a) Show that the set of residue classes modulo m is an Abelian group of order m with respect to addition of residue classes.
(b) Show that the set of four permutations I, (1 2) (3 4), (13)(24) and (14)(23) on four symbols 1, 2, 3, 4 is an Abelian group with respect to the permutation multiplication.
4. (a) If H is a subgroup of a group (G, \circ), then show that $H H^{-1}=H$.
(b) Show that the order of a cyclic group is equal to the order of its generator.
UnIT—III
5. (a) Find the regular permutation group isomorphic to the multiplicative group ($1,-1, i,-i$).
(b) State and prove Fermat's theorem. 5
6. (a) Show that the group $\left(\{1,2,3,4,5,6\}, X_{7}\right)$ is cyclic. How many generators are there?
(b) If $f: G \rightarrow G^{\prime}$ be a group homomorphism, then show that for all $a \in G$, order of $a=$ order of $f(a)$.
UnIT—IV
7. (a) If a polynomial $f(x)$ is divided by $(x-\alpha)(x-\beta), \alpha \neq \beta$, then prove that the remainder is

$$
\frac{(x-\beta) f(\alpha)-(x-\alpha) f(\beta)}{\alpha-\beta}
$$

(b) By Euclidean algorithm, find the greatest common divisor of 26 and 118. Also find the integers x and y to satisfy $d=26 x+118 y$.
$3+2=5$
8. (a) State and prove division algorithm. $1+5=6$
(b) Expand $2 x^{4}-x^{3}+2 x^{2}+5 x-1 \quad$ in powers of $(x+3)$.

4
Unit—V
9. (a) State the fundamental theorem of algebra. Prove that a polynomial $f(x)$ of degree $n, n \geq 1$, with coefficients in \mathbb{R} or \mathbb{C} has exactly n roots.
$1+5=6$
(b) If the equation

$$
3 x^{4}+4 x^{3}-60 x^{2}+96 x-k=0
$$

has four real roots, then show that k must lie between 32 and 43 .
10. (a) If the equation $a x^{3}+3 b x^{2}+3 c x+d=0$ has two equal roots, then prove that $(b c-a d)^{2}=4\left(b^{2}-a c\right)\left(c^{2}-b d\right)$.
(b) Solve the equation $x^{3}-3 x+1=0$ by Cardan's method.

Subject Code : MATH/II/EC/02 (CBCS)
\square

To be filled in by the Candidate

INSTRUCTIONS TO CANDIDATES

1. The Booklet No. of this script should be quoted in the answer script meant for descriptive type questions and vice versa.
2. This paper should be ANSWERED FIRST and submitted within 1 (one) Hour of the commencement of the Examination.
3. While answering the questions of this booklet, any cutting, erasing, overwriting or furnishing more than one answer is prohibited. Any rough work, if required, should be done only on the main Answer Book. Instructions given in each question should be followed for answering that question only.

Booklet No. A

Date Stamp
\qquad

To be filled in by the Candidate

CBCS

DEGREE 2nd Semester
(Arts / Science / Commerce /
) Exam., 2017
Roll No. \qquad
Regn. No. \qquad

Subject \qquad
Paper \qquad

Descriptive Type
Booklet No. B \qquad

MATH/II/EC/02 (CBCS)

2017

(CBCS)
(2nd Semester)

MATHEMATICS

SECOND PAPER

(Algebra)
(PART : A—OBJECTIVE)
(Marks: 25)
Answer all questions

SECTION-A

(Marks : 10)
Each question carries 1 mark
Put a Tick ∇ mark against the correct answer in the box provided:
UniT—I

1. If A is a square matrix, then $A-A^{t}$ is
(a) skew-symmetric
(b) symmetric
(c) Hermitian
(d) None of the above

(2)

2. If A is $m \times n R$-echelon matrix with r non-zero rows, then the row rank of A is
(a) m
(b) n
(c) r
(d) $m+n$

UNIT-II

3. If Q^{+}be the set of all positive real numbers and * a binary operation on Q^{+}defined by $a * b=\frac{a b}{3}$, then the identity element in Q^{+}is
(a) 1
(b) 2
(c) 3
(d) $\frac{1}{3}$
4. Which of the following permutations is even permutation?
(a) $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)(12)$
(b) $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}\right)\left(\begin{array}{llll}1 & 2\end{array}\right)(45)$
(c) $\left(\begin{array}{lll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}(14)(25)\right.$
(d) $\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)(14)$

MATH/II/EC/02 (CBCS)/266

(3)

UNiT-III

5. The order of element 3 in the group $\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$; the composition being addition modulo 6 is
(a) 1
(b) 2
(c) 3
(d) 4
6. What is the remainder if 8^{103} is divided by 103 ?
(a) 2
(b) 4
(c) 8
(d) 16

UniT—IV

7. When $4 x^{5}+3 x^{3}+6 x^{2}+5$ is divided by $2 x+1$, the remainder is
(a) 6
(b) 32
(c) 0
(d) 7

(4)

8. The polynomial $x^{4}-3 x^{3}+2 x^{2}+2 x-4$ is divisible by
(a) $x+2$
(b) $x-2$
(c) $x+1$
(d) $x-1$
Unit—V
9. The equation $x^{7}-3 x^{4}+2 x^{3}-1=0$ has
(a) three positive, two negative and two imaginary roots
(b) three real roots and four imaginary roots
(c) four real roots and three imaginary roots
(d) None of the above
10. If 1 is a multiple root of $x^{4}-5 x^{3}+9 x^{2}-7 x+2=0$, then it is of multiplicity
(a) 1
(b) 2
(c) 3
(d) 4

MATH/II/EC/02 (CBCS)/266

(5)

> SECTION-B
> (Very short questions)
> $($ Marks : 15)

Each question carries 3 marks
Answer one question from each Unit
UniT-I

1. Check whether the inverse of matrix

$$
\left(\begin{array}{rrr}
3 & 2 & 1 \\
1 & 1 & 1 \\
5 & 1 & -1
\end{array}\right)
$$

exists or not. If exists, find it.
2. Prove that the rank of a matrix A is same as the rank of its transpose.
(6)

MATH/II/EC/02 (CBCS)/266
www.gzrsc.edu.in

(7)

UNIT-II

3. In a group (G, \circ), show that $(a \circ b)^{-1}=b^{-1} \circ a^{-1}$.
4. Prove that the set $G=\{1,2,3,4,5,6\}$ is a finite Abelian group of order 6 with respect to multiplication modulo 7 .

(8)

UniT-III

5. Write the permutation $\left(\begin{array}{ll}1 & 2\end{array}\right)(45)(16789)(15)$ as the product of disjoint cycles.
6. If n is the order of a and p is prime to n, then show that a^{p} is also of order n.

(9)

UniT-IV

7. If a polynomial $f(x)$ of degree 2 is divided by $(x-\alpha)^{2}$, then prove that the remainder is $(x-\alpha) f^{\prime}(\alpha)+f(\alpha)$.
8. If $x^{2}+p x+1$ is a factor of $a x^{3}+b x+c$, then find the value of $a^{2}-c^{2}$.

(10)

UniT-V

9. Prove that the equation of third degree with real coefficient whose roots are 2 and i is $2 x^{3}-2 x^{2}+x-2=0$.
10. Test for the irreducibility of $x^{2}-3 x+4$ over \mathbb{Z}.
