2017

(5th Semester)

CHEMISTRY

FIFTH PAPER (CHEM-351)

(Organic Chemistry—II)

Full Marks: 55

Time : $2\frac{1}{2}$ hours

(PART : B—DESCRIPTIVE)

(*Marks* : 35)

The figures in the margin indicate full marks for the questions

- **1.** (a) Draw the resonance molecular orbital picture of benzene.
 - (b) Complete the following transformations with suitable mechanism: 2+2=4

(i) Conc.
$$\frac{\text{Conc. HNO}_3}{\text{Conc. H}_2\text{SO}_4}$$

(ii)
$$\begin{array}{c} \text{NH}_2 \\ \hline 2) \text{ H}_2\text{O} \end{array} ?$$

(c) Which of the following species satisfy Hückel's rule? Explain.

OR

- **2.** (a) Explain why the acidity of *m*-nitrophenol is much lower than its *o* and *p*-isomers. 2
 - (b) Complete the following reaction (mechanism not required): 1×3=3

(i)
$$CH_3 + Br_2 \frac{\text{light}}{\text{at boiling point}}$$
?

(ii)
$$OH + HCN + HCI \xrightarrow{1) ZnCl_2} ?$$

- (c) What do you mean by nuclear and side chain halogenations? Give examples. 2
- **3.** (a) Arrange the following in their increasing order of acidity. Explain. 2

 $\label{eq:ch2COOH} {\it CH}_3{\it CH}_2{\it CH}_2{\it COOH}, \\ {\it CH}_3{\it CH}({\it Cl}){\it CH}_2{\it COOH}, \\ {\it ClCH}_2{\it CH}_2{\it CH}_2{\it COOH}$

8G/217a

(Turn Over)

8G**/217a**

(Continued)

1

- Write one chemical test to confirm the presence of carbonyl group.
- Write the product(s) of the following reactions with suitable mechanism: 2×2=4
 - 2HCHO = 30% NaOH ?

(ii)
$$H_3C \xrightarrow{O} NH_2 \xrightarrow{Br_2/KOH} D \xrightarrow{H_2O} E$$

OR

- **4.** (a) Compound (A) C_4H_8O forms phenylhydrazone. It fails to react with Tollen's reagent but gives iodoform test. On reduction with Zn-Hg/HCl, (A) yields *n*-butane. Assign structure (A).
 - Complete the following reactions: 3+2=5

(i)
$$R \xrightarrow{O} H \xrightarrow{SOCl_2} A$$

$$\xrightarrow{2CH_2N_2} B \xrightarrow{1) Ag} C$$
(ii) $R \xrightarrow{O} H \xrightarrow{SOCl_2} A$

$$\xrightarrow{2CH_2N_2} B \xrightarrow{1) Ag} C$$
(iii) $R \xrightarrow{O} H \xrightarrow{2CH_2N_2} B \xrightarrow{1) Ag} C$

5. (a) Write the Hinsberg's test to distinguish between 1°, 2° and 3° amines.

- Explain active methylene compounds with suitable examples. $1\frac{1}{2}$
- What will happen when methyl amine reacts with acetyl chloride? Write the mechanism of the reaction. $1\frac{1}{2}$
- Differentiate between tautomerism and resonance.

OR

- Complete following chemical **6.** (a) the transformations: $2\frac{1}{2} \times 2 = 5$
 - $CH_3COCH_2CO_2C_2H_5 \longrightarrow$ CH₃CH₂CH₂CH₂CO₂H
 - (ii) $CH_2(CO_2C_2H_5)_2 \longrightarrow$ CH₃CH₂CH₂CO₂H
 - "Aryl amines are weaker bases than alkyl amines." Explain.
- Explain B_{AC}2 mechanism for the **7.** (a) 2 hydrolysis of easter.
 - Complete the following reactions with suitable mechanism (any two):

(i)
$$H_3C$$
 O + BrCH₂COOEt $\frac{1) \text{ Zn/ether}}{2) \text{ H}_2O}$?

8G/217a

(Turn Over)

2

1

2

8G**/217a**

(Continued)

2

2

8. (a) Write a brief note on the formation of carbon-carbon double bond. 2

OR

Complete the following transformations with suitable mechanism (any two):

$$2\frac{1}{2} \times 2 = 5$$

(i)
$$t\text{-BuOK} \rightarrow 0$$

(ii)
$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{Cl} \\ \hline \text{AlCl}_3 \end{array} \Rightarrow \overline{\text{CH}_3\text{CH}_2\text{Cl}}$$

(iii) + HCHO +
$$(C_2H_5)_2NH$$

H

AcOH, 100 °C

 H_2O ?

9. (a) Complete the following transformations (any three, mechanism not required):

$$1 \times 3 = 3$$

(i)
$$(i)$$
 COOH (i) $($

(ii)
$$\left(\text{S} \right) + \text{CH}_3\text{COONO}_2 \longrightarrow ?$$

(iii)
$$\begin{array}{c} \text{(iii)} & \begin{array}{c} \text{1) NaNH}_2, \text{ heat} \\ \hline \text{2) H}_2\text{O} \end{array} \Rightarrow ?$$

(iv)
$$\longrightarrow$$
 Below 500 °C

(b) How will you synthesise isoquinoline by Bischler-Napieralski method? Give chemical equations.

OR

10. (a) Mention one method of preparation for pyridine. Give the chemical equation. 2

8G/217a

(Turn Over)

8G**/217a** www.gzrsc.edu.in (Continued)

4

(b) Complete the following reactions with suitable mechanism (any two): $2\frac{1}{2}\times2=5$

(i)
$$\downarrow$$
 + (CH₃CO)₂ $\xrightarrow{\text{AlCl}_3}$?

(ii)
$$\frac{1) \text{ EtMgBr/150 °C}}{2) \text{ H}_2\text{O}} ?$$

$$\frac{1) \text{ KNH}_2}{2) \text{ RI GOD}} ?$$

(iii)
$$H_3C$$
 CH_3 + PhNHNH₂

$$\frac{\text{Phosphoric acid}}{\Lambda} \Rightarrow ?$$

CHEM/V/05

2017

(5th Semester)

CHEMISTRY

FIFTH PAPER (Chem-351)

(Organic Chemistry—II)

(PART : A—OBJECTIVE)

The figures in the margin indicate full marks for the questions

(*Marks* : 20)

SECTION—I

(*Marks* : 5)

Put a Tick (\checkmark) mark against the correct answer in the brackets provided : $1\times5=5$

- **1.** Which of the following statements with respect to phenol is true?
 - (a) Phenol reacts with ammonia in the presence of ZnCl₂ to give 2-hydroxy aniline ()
 - (b) Phenol undergoes nitration with dilute nitric acid to form *m*-nitrophenol ()
 - (c) Phenol can be prepared by hydrolysis of aryl halides with aqueous NaOH ()
 - (d) The boiling point of o-nitrophenol is higher than its meta- and para-isomers ()

/217

2.	Ketones are the first oxidation product of								
	(a) 1°-alcohols ()								
	(b) 2°-alcohols ()								
	(c) 1°-amines ()								
	(d) carboxylic acids ()								
3.	Aniline on treatment with bromine water gives								
	(a) 2-bromoaniline ()								
	(b) 3-bromoaniline ()								
	(c) 4-bromoaniline ()								
	(d) 2,4,6-tribromoaniline ()								
4.	4. In the following transformation, ethyl 3-oxobutanoate reacts with benzaldehyde in the presence of piperidine-pyridine mixture as a catalyst to give ethyl 2-benzylidene-3-oxobutanoate.								
	H_3COC $COOC_2H_5 + C_6H_5CHO$ $\xrightarrow{piperidine}$ $\xrightarrow{pyridine}$ $\xrightarrow{pyridine}$								
	$^{ m H}$ $^{ m COCH_3}$								
	C_6H_5 — C = C $COOC_2H_5$								
	ethyl 2-benzylidene-3- oxobutanoate								
	This type of reaction is known as								
	(a) Claisen-Schmidt reaction ()								
	(b) Mannich reaction ()								
	(c) Knoevenagel reaction ()								
	(d) Michael addition reaction ()								
CHE	M/V/05 /217								

5.	The	order	of	aromaticity	in	pyrrole,	furan	and
	thiop	ohene i	S					

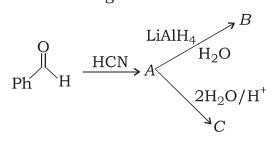
(a) thiophene > pyrrole > furan (

(b) thiophene > furan > pyrrole (

(c) furan > pyrrole > thiophene ()

(d) furan > thiophene > pyrrole ()

(4)


SECTION—II

(*Marks* : 15)

Answer the following questions in not more than 6 sentences each : $3\times5=15$

1. Unlike alkyl halides, aryl halides do not react with nucleophiles under normal laboratory conditions. Explain.

2. Complete the following reactions:

- 3. Write the chemical reaction of ethyl amine with—
 - (a) NaNO₂/HCl
 - (b) CHCl₃/KOH

4. Which reagent is used for the following alteration? Complete the reaction using proper reaction mechanism.

5. Explain why nitration of pyrrole predominantly take place at C-2- position.

 $\star\star\star$

8G—300**/217** CHEM/V/05