2014

(5th Semester)

CHEMISTRY

SEVENTH PAPER (CHEM-353)

(Physical Chemistry—II)

Full Marks: 55

Time: 2 hours

(PART : B—DESCRIPTIVE)

(*Marks* : 35)

The figures in the margin indicate full marks for the questions

- 1. (a) What is collision diameter?
 - (b) Discuss the effect of temperature on distribution of molecular velocities.
 - (c) Calculate various degrees of freedom for (i) H₂, (ii) H₂O and (iii) C₆H₆ molecules.

(Turn Over)

3

OR

2.	(a)	What do you mean by the term 'mean free path?	1
	(b)	What is Maxwell generalization? Why does thermal motion cease completely at absolute zero?	3
	(c)	State and explain the law of equipartition of energy.	3
3.	(a)	What is surface tension? Why water has abnormally high surface tension?	2
	(b)	Define viscosity with a neat labelled diagram. Discuss the determination of viscosity by Ostwald viscometer method.	5
		OR	
4.	(a)	What is acid-base catalysis?	2
	(b)	Describe the Lindeman's theory of unimolecular reactions.	5
5.	(a)	How does chemical potential vary with temperature?	2
G15	25	60/140a (Continu	ed)

www.gzrsc.edu.in

	(b)	How can you express the criteria for reversible and irreversible processes in terms of entropy S alone?	3
	(c)	What is residual entropy?	2
		OR	471
6.	(a)	Deduce the expression for chemical potential for a system of ideal gases.	5
	(b)	What are partial molar quantities? Why are they called extensive properties?	2
	100	to the second of	
7	. (a)	State the law of rational indices.	2
ř.	(b)	The parameters of an orthorhombic unit cell are $a = 50 \text{ pm}$, $b = 100 \text{ pm}$ and $c = 150 \text{ pm}$. Determine the spacing between the (123) planes.	3
	(c)	How many number of atoms are present within (i) a body-centred cubic unit cell and (ii) a face-centred cubic unit cell?	2
		OR	
8	s. (a,	What is axis of symmetry? A hexagonal crystal has hexad axis. Comment.	3
2	(b)	atom in (i) a body-centred cubic unit cell and (ii) a face-centred cubic unit cell.	2

G15-250/140a

(Turn Over)

(c)	An element exists as a cubic lattice whose edge length is 2.88 Å. If the density of the element is 7.20 g cm ⁻³ , how many unit cells are there in 100 g of the metal?
9 . (a)	Explain the following:

(b) The molar conductances at infinite dilutions for NaOH, NaCl and BaCl₂ are 248×10⁻⁴, 1265×10⁻⁴ and 280×10⁻⁴Sm²mol⁻¹ respectively. Calculate Λ_m [Ba(OH)₂].

3

OR

- 10. (a) How does the speed of an ion in an electric field vary with the applied potential gradient? What is this effect called?
 - (b) Explain why conductance of strong electrolytes increases with increase in frequency of applied alternating current.
 - (c) What are thowadyantures of conducto-

2014

(5th Semester)

CHEMISTRY

SEVENTH PAPER (CHEM-353)

(Physical Chemistry—II)

(PART : A—OBJECTIVE) o anov

(Marks: 20)

The figures in the margin indicate full marks for the questions

SECTION-A

(Marks : 5)

Put a Tick (✓) mark against the correct answer in the brackets provided: 1×5=5

1.	The	ex	clude	ed	vol	ume	per	mole	of a	a	gas	is	 the
	actu	al	volu	me	of	the	gas	molec	ule.	•			

(a) 1/10th time () (b) (c) (c) (d)

(b) 4 times ()

(c) 2 times ()

(d) 1/2 () (and a high a line in the lin

2. According to third law of thermodynamics, at absolute zero for a perfect crystal

(a) $\Delta S = positive$

CHEMISTRY

I blit Semester i

(b) $\Delta S = \text{negative}$ (AA) HTVAYVAS

(Physical Chemis) y-llores = & A (c)

(d) None of the above

(Marks: 20)

The figures in the margin indicate full marks for the questions

SECTION-A

1 Marks : 5)

3. Michaelis constant $K_{\rm m}$ is given by

(a) $K_{\rm m} = (k_{-1} + k_2) / k_1$ () to be bules of .1

- (b) $K_{\rm m} = (k_{-1} + k_1) / k_2$ () britted (b)
- (c) $K_{\rm m} = k_{-1} / k_1$ (
- (c) 2 times () (d) $K_{\rm m} = k_1 / (k_{-1} + k_2)$ (1)

V/CHEM (vii)/140

	The angle at which first-order reflection will occur in X-ray spectrometer of wavelength 1.54 Å and interplanar distance 4.04 Å are diffracted is
127	Answer the following questions:

1. What is transport numbe (H), is '86 °011 (a) Faraday's first law of electrolysis?

(b) 10° 59′ ()

(c) 180° ()

(d) 22° 24' ()

5. The SI unit of specific conductance is

(a) $S^{-1} m^{-1}$ ()

(b) Ω^{-1} cm ()

(c) $\Omega \, \text{cm}^{-1}$ ()

(d) Sm^{-1} ()

SECTION—B

(Marks : 15)

Answer the following questions:

 $3 \times 5 = 15$

1. What is transport number? How is it related to Faraday's first law of electrolysis?

2. Write a short note on optical exaltation.

- 3. Calculate the Miller indices of crystal planes which cut through the crystal axes at—
 - (a) (2a, 3b, c);
 - (b) (a, b, c);
 - (c) (2a, -3b, -3c).

. Using the third law of thermodynamics, show th

$$L_{T\to 0} \left(\frac{\partial P}{\partial T} \right)_{V} = 0$$

4. Using the third law of thermodynamics, show that

$$\lim_{T\to 0} \left(\frac{\partial F}{\partial T}\right)_V = 0$$

 What is most probable velocity? Derive its expression from Maxwell distribution of molecular velocities.

G15-250/140