VI/CHEM (ix)

133

2015

(6th Semester)

CHEMISTRY

NINTH PAPER

Course No.: CHEM-361

(Organic Chemistry—III)

Full Marks: 55

Time: 21/2 hours

(PART : B-DESCRIPTIVE)

(Marks : 35)

The figures in the margin indicate full marks for the questions

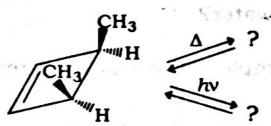
- 1. (a) What are the different modes of dissipation of energy?
 - (b) Discuss the following with examples: 3
 - (i) Photochemical reduction
 - (ii) Norrish type-II cleavage

G15-250/340a

(Turn Over)

- 2. (a) What types of excitation are possible in a compound containing carbonyl group on irradiation with UV light?
- 4

(b) Comment upon the following:


3

- (i) Singlet and triplet states
- (ii) Quantum yield
- 3. (a) With the help of Frontier molecular orbital method, explain why disrotatory ring closure is allowed in photoinduced reaction in 1,4-disubstituted 1,3-butadiene.
- 4
- (b) Complete the following reactions naming the type of cycloaddition reaction:
 - (i) $= + = \rightarrow ?$
 - (ii) // + = \rightarrow ?
 - (iii) $+ \frac{CN}{CN}C = C \frac{CN}{CN} \rightarrow ?$

OR

4. (a) Write brief notes on suprafacial and antarafacial processes in cycloaddition pericyclic reaction.

(b) Predict the products from the following reactions:

- What happens when thiol is treated 5. (a) with mild oxidizing agent such as bromine? Write the chemical equations involved.
 - (b) The diequatorial conformer is more stable than diaxial conformer. Explain 4 it. 🛷

OR

- 6. (a) Write all the possible conformational structures of 1,4-dimethylcyclohexane.
 - How will you prepare thiol from-
 - R—S—S—R; (i)
 - (ii) R—X;
 - (iii) CH₃CH=CH₂? 3
 - What happens when thiols react with (c) NaOH? 1

- 7. (a) How can you synthesize Mannich base with the help of microwave in presence of water?
 - (b) Complete the following reaction: 2

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

(c) Complete the following product in presence of microwave:

CHO +
$$CH_3$$
 NH₂ + NH_2 NH

$$\frac{1:1:1 \text{ mole ratio}}{MW}$$
?

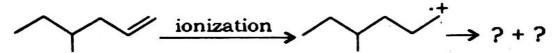
OR

- 8. (a) Discuss the use of microwave in Hofmann elimination reaction.
 - (b) Predict the products from the following 2+2=4

(i)
$$H + CH_3 CH_3 \longrightarrow ?$$

(ii)
$$R \xrightarrow{H} H + R \xrightarrow{H} O H \longrightarrow ?$$

%15—250/**340a** www.gzrsc.edu.in


D

(Continued)

9.	(a)	How	can	you	differentiate	between		
		shielding and deshielding shifts in NMR						
	spectroscopy?							

3

(b) Propose the structures and fragmentation mechanisms corresponding to ions with m/z 57 and 41 in the mass spectrum of 4-methyl-1-hexene:

OR

Predict the chemical shift for toluene 10. (a) and acetophenone.

2

Explain the principle of **NMR** (b) spectroscopy.

2

(c) What approximate intensities would you expect for the M^{+} and $M^{+}+2$ peaks of CH₃Cl?

VICE May/300

	DIVI (LK)
2015	T
(6th Semester)	16.5
The transfer and the second of the test	1157
CHEMISTRY	(0)
NINTH PAPER	(5)
Course No.: CHEM-361	
(Organic Chemistry—III)	
(PART : A—OBJECTIVE)	
(Marks : 20)	
The figures in the margin indicate full marks for the q	uestions
SECTION—A COMPANY OF THE PARTY OF	(3)
(Marks: 5) Loss and A	(b)
Put a Tick (✓) mark against the correct answer in brackets provided for it:	
1. Norrish type-I reaction is a market sufficient of	
(a) γ-bond cleavage ()	(6)
(b) δ-bond cleavage ()	
(c) β-bond cleavage ()	(0)

/340

(d) α -bond cleavage (1) (1) (1)

2. The Diels-Alder reaction is an example of
(a) polar elimination reaction ()
(b) pericyclic electrocyclic reaction ()
(c) pericyclic cycloaddition reaction ()
(d) polar addition reaction ()
3. In the given chair conformation structure of X, Y-disubstituted cyclohexane, the positions of X and Y are
(a) X axial and Y equatorial ()
(b) Y axial and X equatorial ()
(c) Both in equatorial ()
(d) Both in axial ()
. The aim of green chemistry is
(a) to design the chemical product and process that maximize profits ()
(b) to design the chemical product and process that reduce hazardous substance ()
(c) to design chemical products and process that work most efficiently ()
(d) utilization of non-renewable energy (

5 .	In th	ne mass specti ords	roscopy of		m, collector			
	(a)	only negative charged fragment (a)						
	(b)	only positive	charged	fragment				
	(c)	free radical fragment (1990)						
	(d)	negative fragments	and ()	positive	charged			

SECTION-B

(Marks : 15)

Answer the following questions: 3×5≈15

1. Explain the role of photosensitizer in some photochemical reactions.

2. What is the pericyclic reaction? Explain with example of Diets-Alder reaction.

 Thiolate ions (CH₃CH₂8") are stronger nucleophile than corresponding alkoxides (CH₃CH₂O"). Explain. 4. What are Baker's yeast and how are they taking for ** selective reduction β-ketoesters? 6. How will you distinguish between the following compounds using 1H-NMR spectroscopy?