III/BCA/302

(2)

2017

(3rd Semester)

BACHELOR OF COMPUTER APPLICATION

Paper No.: BCA-302

[Mathematics—III (Numerical Analysis)]

Full Marks: 75

Time: 3 hours

(PART: B—DESCRIPTIVE)

(*Marks*: 50)

The figures in the margin indicate full marks for the questions

Answer five questions, selecting one from each Unit

UNIT—I

- **1.** (a) Using Regula-Falsi method, find the real root of the equation $x^3 4x 9 = 0$ correct to 3 decimal places.
 - (b) Use iteration method to find a root of the equation $x^3 + x^2 100 = 0$ to 4 decimal places.

2. (a) Solve the following by Gauss elimination method:

$$2x+y+z=10$$
$$3x+2y+3z=18$$
$$x+4y+9z=16$$

(b) Apply Gauss-Seidel method to solve the following equations:

$$20x + y - 2z = 17$$
$$3x + 20y - z = -18$$
$$2x - 3y + 20z = 25$$

Unit—II

3. (a) Evaluate: 2+2=4

$$(i) \quad \Delta^2 \left(\frac{1}{x^2 + 5x + 6} \right)$$

(ii) $\Delta(e^{3x} \log 2x)$

(b) Express $u = x^4 - 12x^3 + 24x^2 - 30x + 9$ in factorial notation. Hence show that $\Delta^5 u = 0$.

(c) Obtain the function whose first difference is $2x^3 + 3x^2 - 5x + 4$.

5

5

3

3

5

5

(4)

4. (a) Sum the following series :

$$1^3 + 2^3 + 3^3 + \dots + n^3$$

- (b) Prove that $\delta = \Delta (1 + \Delta)^{-\frac{1}{2}} = \nabla (1 \nabla)^{-\frac{1}{2}}$. 3
- (c) Show that $\Delta^3 y_2 = \nabla^3 y_5$. 2

UNIT—III

5. (a) From the following table, find ywhen x = 2.4 by Newton's interpolation formula:

х	1.7	1.8	1.9	2.0	2.1	2.2	2.3
y	5.474	6.050	6.686	7.389	8.166	9.025	9.914

(b) Using Gauss forward formula, find y when x = 3.75 from the following table :

х	2.5	3.0	3⋅5	4.0	4·5	5.0
y	24.145	22.043	20.225	18.644	17.267	16.047

6. (a) The following table gives the values of x and y. Find the value of x when y = 12using Lagrange's inverse interpolation method:

х	1.2	2.1	2.8	4.1	4.9	6.2
y	4.2	6.8	9.8	13.4	15.5	19.6

Newton's divided difference (b) Using formula, evaluate y when x = 8, from the following table:

х	4	5	7	10	11	13
y	48	100	294	900	1210	2028

UNIT—IV

7. (a) Find the derivative of f(x) at x = 0.4 from the following table:

х	0.1	0.2	0.3	0.4
y	1.10517	1.22140	1.34986	1.49182

(b) Evaluate

$$\int_0^6 \frac{dx}{1+x^2}$$

using (i) Simpson's $\frac{1}{3}$ rd rule and (ii) Simpson's $\frac{3}{8}$ th rule.

8. (a) Use Romberg's method to compute

$$\int_0^1 \frac{dx}{1+x^2}$$

correct to 4 decimal places.

5

5

5

5

5

5

5

5

(b) Apply trapezoidal rule to evaluate

$$\int_1^5 \int_1^5 \frac{dx \, dy}{\sqrt{x^2 + y^2}}$$

taking two subintervals.

5

Unit-V

- **9.** (a) Using Picard's method, find an approximate value of y when x = 0.1, if $\frac{dy}{dx} = x y^2$ and y = 1 at x = 0.
 - (b) Using Euler's method, find an approximate value of y corresponding to x = 1, given that $\frac{dy}{dx} = x + y$ and y = 1, when x = 0.
- **10.** Solve the following differential equations :

(i)
$$\frac{dy}{dx} = \frac{x - y}{x + y}$$

(ii)
$$x\frac{dy}{dx} + 2y = x\sin x$$

Subject Code : III/F	3CA/302	Booklet No. A		
To be filled in by t		Date Stamp		
DEGREE 3rd Semes (Arts / Science / C) Ex Subject	ommerce / am., 2017	,		
Paper	1	To be filled in by the Candidate		
INSTRUCTIONS TO	CANDIDATES	DEGREE 3rd Semester		
 The Booklet No. of thi quoted in the answer descriptive type que versa. 	script meant for	(Arts / Science / Commerce /		
 This paper should be A and submitted with of the commence Examination. 	in <u>1 (one) Hour</u>	Roll No		
3. While answering the		Subject		
booklet, any cutting writing or furnishing	_	Paper		
answer is prohibited. if required, should l	_	Descriptive Type		
the main Answer Bo given in each que followed for answeri	ook. Instructions stion should be	Booklet No. B		
only. Signature of	Signature of	Signature of		
Scrutiniser(s)	Examiner(s)	Invigilator(s)		

/264

2017

(3rd Semester)

BACHELOR OF COMPUTER APPLICATION

Paper No.: BCA-302 [Mathematics—III (Numerical Analysis)] (PART : A—OBJECTIVE) (*Marks*: 25) The figures in the margin indicate full marks for the questions SECTION—I (*Marks*: 15) **I.** Tick (✓) the correct answer in the brackets provided : $1 \times 10 = 10$ A numerical integration when applied to a function of a single variable is known as (a) quadratuple () (b) quadrature () quarterback () (d) None of the above (/264

2.	deri	process of calculating the value of the vative of a function at some assigned value from the given set of values (x_i, y_i) is called
	(a)	calculus ()
	(b)	integration ()
	(c)	numerical analysis ()
	(d)	numerical differentiation ()
3.		process of computing the value of the etion outside the given range is called
	(a)	interpolation ()
	(b)	extrapolation ()
	(c)	intervention ()
	(d)	None of the above ()
4.	In fa	actorial notation, $[x^3]$ is
	(a)	x(x-1) ()
	(b)	$x(x-1)(x-2) \qquad ()$
	(c)	x(x-1)(x-2)(x-3) ()
	(d)	None of the above ()
BCA/3	302 /2 0	64

III/

5.	A po $f(x)$ i	lynomial $f(x)$ is called algebraic equation if is
	(a)	1 ()
	(b)	O ()
	(c)	-1 ()
	(d)	None of the above ()
6.		algebraic and transcendental equations, tions are known as
	(a)	roots ()
	(b)	solutions ()
	(c)	approximations ()
	(d)	None of the above ()
7.	The v	value of $E(y^2 + 4)$ is
	(a)	$y^2 + 4$ ()
		$(y+h)+4 \qquad ()$
	(c)	$((y+h)^2+4) \qquad ()$
	(d)	None of the above ()

8.	δy_3	$y_2 - \delta y_{1/2} =$
	(a)	$\Delta^3 y_{3/2}$ ()
	(b)	μy_1 ()
	(c)	$\delta^2 y_1$ ()
	(d)	None of the above ()
9.		interpolation method used for unequal rvals is
	(a)	Lagrange's interpolation formula ()
	(b)	Newton's forward formula ()
	(c)	Gauss backward formula ()
	(d)	None of the above ()
10.	A di	fferential equation may contain
	(a)	mathematical equation ()
	(b)	derivatives ()
	(c)	constants ()
	(d)	All of the above ()

- **II.** Indicate *True (T)* or *False (F)* by a Tick (\checkmark) mark: $1 \times 5 = 5$
 - 1. In Gauss-Jordan method, we eliminate variable from all the equations in the first step itself.

(T / F)

2. The process of finding the value of y corresponding to the value of $x = x_i$ between x_0 and y_0 is called interpolation.

(T / F)

3. If a function contains trigonometric, logarithmic, exponential functions, it is called transcendental function.

(T / F)

4. The *n*th differences of a polynomial of the *n*th degree are constant and all higher order differences are zero.

(T / F)

5. $y_1 - y_0 = \Delta y_1 = \nabla y_0 = \delta y_{3/2}$.

(T / F)

SECTION—II

(*Marks*: 10)

III. Answer the following questions briefly: $2 \times 5 = 10$

1. Differentiate 'order' and 'degree' of a differential equation with example.

2. Write down the general formula for Newton's forward interpolation.

(8)

3. Express $y = 2x^3 - 3x^2 + 3x - 10$ in factorial notation.

4. Prove that $\nabla^2 y_8 = y_8 - 2y_7 + y_6$.

(9)

5. Prove that $y = -\frac{1}{3}x^{-2}$ is the solution of $\frac{dy}{dx} = 6y^2x$.

8G—210**/264**

III/BCA/302