III/BCA/302

2015

(3rd Semester)

BACHELOR OF COMPUTER APPLICATION

Paper: BCA-302

[Mathematics—III (Numerical Analysis)]

(New Course)

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. What is the relation between E and Δ ?
- 2. Write the statement of bisection method. 2
- 3. Express $f(x) = 3x^3 4x^2 + 3x + 11$ into factorial polynomial and hence show that $\Delta^3 f(x) = 18$.
- 4. (a) Find a real root of the equation $\sin x = 10(x-1)$

using iteration method.

7

G16/180

(Turn Over)

Or

(b) Using regula falsi method, find the real root of the equation

$$x^3 - 2x - 5 = 0$$

5. (a) Solve the system of equations by Crout's method:

$$x_1 + x_2 - 2x_3 = 2 \cdot 5$$

$$4x_1 - 2x_2 + x_3 = 5 \cdot 5$$

$$3x_1 - x_2 + 3x_3 = 9$$

Or

(b) Use Gauss elimination method to solve: 8

$$2x+y+z=10$$
$$3x+2y+3z=18$$
$$x+4y+9z=16$$

6. (a) Compute the values of e^x at x = 0.02 and at x = 0.38, using suitable interpolation formula on the table of data given below:

x : 0.0 0.1 0.2 0.3 0.4 $e^x : 1.0000 1.1052 1.2214 1.3499 1.4918$

G16/180

(Continued)

8

8

Or

(b)	
	polynomial of degree four or less which
	takes the following values of the formula
	f(x):

x : 1 2 3 4 5f(x) : 1 -1 1 -1 1

7. (a) Find the value of y at x = 5 (using Lagrange's interpolation). Given

 $x : 1 \quad 3 \quad 4 \quad 8 \quad 10$ $y : 8 \quad 15 \quad 19 \quad 32 \quad 40$

Or

(b) Given

 $\log_{10} 654 = 2 \cdot 8156$

 $\log_{10} 658 = 2 \cdot 8182$

 $\log_{10} 659 = 2 \cdot 8189$

 $\log_{10} 661 = 2 \cdot 8202$

Find the value of \log_{10} 656 by Newton's divided difference formula.

8. By dividing the interval into 6 equal parts, evaluate $\int_0^6 \frac{dx}{1+x^2}$, using—

- (a) trapezoidal rule;
- (b) Simpson's one-third rule;
- (c) Simpson's three-eighth rule;
- (d) Romberg's method.

(Turn Over)

8

8

8

10

G16/180

(Tane Society)

9. Find f'(1.5) and f''(1.5) from the following table:

7

8

8

x : 1.5 2.0 2.5 3.0 3.5 4.0 f(x) : 3.375 7.000 13.625 24.000 38.875 59.000

10. (a) Use Picard's method of successive approximation to solve

$$\frac{dy}{dx} = x + y$$

with boundary conditions y = 1, when x = 0.

Or

(b) Use Runge-Kutta fourth-order method to solve

$$\frac{dy}{dx} = xy \text{ for } x = 1.4$$

initially x = 1, y = 2 (take h = 0.2).

11. Solve any three of the following differential equations:

4×3=12

(i)
$$x\frac{dy}{dx} + \frac{y^2}{x} = y$$

(ii)
$$(1-x^2)\frac{dy}{dx} - xy = 1$$

(iii)
$$x^2dy+y(x+y)dx=0$$

(iv)
$$(x^2 - x^2y)dy + (xy^2 + y^2)dx = 0$$

 $\star\star\star$