2019

(Pre-CBCS)

(1st Semester)

ELECTRONICS

FIRST PAPER

(Electronic Measuring Instruments and Circuit Analysis)

Full Marks: 55

Time: 2½ hours

Simple calculator may be used in this paper

(PART : A—OBJECTIVE)

(Marks: 20)

The figures in the margin indicate full marks for the questions

SECTION—A

(*Marks*: 5)

Put a Tick (\checkmark) mark against the correct answer in the brackets provided : $1\times5=5$

- 1. The first three colour bands of a resistor indicate
 - (a) tolerance ()
 - (b) resistance value ()
 - (c) reliability ()
 - (d) power rating ()
- 2. The working of a transformer essentially depends on
 - (a) mutual inductance ()
 - (b) self-inductance ()
 - (c) magnetic circuit (
 - (d) number of turns of coil (

3.	The	power	in a	n a.c	. cir	cuit i	s give	n by						
	(a)	VI sin		()									
	(b)	I^2Z	()										
	(c)	I^2X_L	(()										
		$VI\cos$)									
4.		ording Fs in a									of a	ll IR dro	ps an	d
	` '	zero	()										
		positiv												
		negati												
	(d)	greate	r tha	n un	ity	()							
5.		ximum d of	powe	r will	be	transf	erred	from	a sour	ce of 10)	resistan	ce to	a
	(a)	5	()										
	(b)	20 10 40	()										
	(c)	10	()										
	(d)	40	()										
							SECT	ION—	В					
							(Mar	ks : 15	5)					
Ans	wer	any <i>five</i>	e ques	stions	of t	he fol	lowin	g:					3	×5=15
1.	Exp	olain th	e con	ıstru	ction	of a	n elec	trolyti	с сара	citor.				
2.	Exp	olain th	e wo	rking	of 1	nultin	neter	as a v	oltmet	er.				

- 3. Define phasor and phasor diagram.
- 4. Differentiate between unilateral and bilateral elements giving one example each.
- **5.** State and prove the superposition theorem.
- **6.** Discuss the working principle of varactor.
- 7. Compare among air core, iron core and ferrite core inductors.
- 8. Define self-inductance and mutual inductance of a coil.

(PART : B—DESCRIPTIVE)

(*Marks* : 35)

The figures in the margin indicate full marks for the questions

1. (a) Discuss the factors that control the capacitance of a capacitor.

(b) What do you mean by power rating of a resistor? Describe briefly the preparation of wire-wound resistor and carbon composition resistor.

1+2+2=5

OR

- **2.** (a) Describe the construction of ceramic capacitor. Why is ceramic capacitor preferred over mica or paper capacitor? 2+2=4
 - (b) Define inductance of a coil. Two coils each having an inductance of 300 H have combined inductance of 620 H when connected series-aiding and 500 H when connected series-opposing. Calculate (i) their mutual inductance, and (ii) coefficient of coupling. 1+2=3
- **3.** (a) Describe in detail the construction and working principle of a transformer. Mention two uses of a transformer. 3+2=5
 - (b) What are thermistor and strain gauge?

OR

- **4.** With a neat diagram, describe the construction and principle of working of Cathode-ray Oscilloscope (CRO). 1+2+4=7
- **5.** (a) What is quality factor of a resonant circuit? Derive the expression for quality factor of a series resonant circuit. 1+3=4
 - (b) Discuss the working of a low-pass filter.

ELEC/I/01/193 3 [Contd.

3

2

2

OR

6.	(a)	Derive an expression of alternating current through a series <i>L-C-R</i> circuit.	4						
	(b)	A circuit consists of a capacitor of 100 pF connected in series with a coil of resistance 5 and inductance of 100 H. Calculate (i) resonance frequency, (ii) Q-factor and (iii) bandwidth.							
7.	(a)	What are active and passive elements? Give one example of each. $2+2=$	=4						
	(b)	How will you convert a voltage source into a current sources?	3						
		OR							
8.	(a)	Discuss the current and voltage division law.	4						
	(b)	Define branch and node. Briefly explain nodal analysis. 1+2=	=3						
9.	(a)	Derive the condition for transfer of maximum power from a source to a load.	3						
	(b)	Show that the Norton's equivalent circuit can be found from the Thevenin's equivalent circuit.	4						
		OR							
10.	(a)	State Thevenin's theorem and prove it for a two-terminal network.	4						
	(b)	Apply Norton's theorem to calculate the current through 12 resistor in the following circuit:	3						

* * *