2012	
(2nd Semester)
PI POTPONICO	3

SECOND PAPER

(Semiconductor Physics)

(PART : A—OBJECTIVE)

(Marks : 20)

SECTION—A

(Marks : 5)

Each question carries 1 mark

Answer all questions

Tick (\checkmark) the correct answer in the brackets provided:

1.	The	leakage	current	acro	ss a	p-n	junction	is	due	to
	(a)	minority	carriers		()				
	(b)	majority	carriers	20	()	8			
	(c)	junction	capacita	ance		()			
	(d)	impurity	()	*					

/280

				(B) 100				
2	The	maximum	officionor	~f	~	half		٠
4.	TILC	maximum	cinciency	O_1	a	nan-wave	recuner	15

- (a) 50% ()
- (b) 81·2% ()
- (c) 25% ()
- (d) 40·6% ()

3. In CB configuration, current transfer characteristic α_{ac} =

$$(a) \quad \frac{\Delta I_E}{\Delta I_C} \qquad (a)$$

(b)
$$\frac{\Delta I_B}{\Delta I_E}$$
 ()

(c)
$$\frac{\Delta I_C}{\Delta I_B}$$
 (

$$(d) \frac{\Delta I_C}{\Delta I_E} \qquad ($$

4. The intersection of d.c. load line with the base current in CE transistor circuit is
(a) saturation point ()
(b) cut-off point ()
(c) operating point ()
(d) check point ()
5. The final stages of a multistage amplifier use
(a) RC coupling ()
(b) direct coupling ()
(c) transformer coupling ()
(d) impedance coupling ()
II/ele (ii)/280

www.gzrsc.edu.in

SECTION-B

(Marks: 15)

Each question carries 3 marks

Answer any five questions

1. Give the mechanism of hole current flow in a semiconductor.

2. What are the important electrical properties of capacitor and inductor in making a filter circuit?

3. What do you mean by thermal runaway?

4. Show that

$$\beta = \frac{\alpha}{1 - \alpha}$$

where the symbols have their usual meanings in a transistor.

5. What are the advantages and disadvantages of RC coupled amplifier?

6. Write the steps of construction of d.c. load line.

7. Write a note on depletion layer of a p-n junction diode.

8. Compare the differences between an ordinary junction diode and a Zener diode.

2012

(2nd Semester)

ELECTRONICS

SECOND PAPER

(Semiconductor Physics)

Full Marks: 55
Time: 3 hours

(PART : B—DESCRIPTIVE)

(Marks: 35)

The figures in the margin indicate full marks for the questions

- 1. (a) What are intrinsic and extrinsic semiconductors? Briefly explain the formation of n-type semiconductor. 2+3=5
 - (b) Classify solids in terms of the energy band diagrams.

Or

(a) Explain, with suitable diagram, the V-I characteristics of a p-n junction diode. 3

12G-100/280a

(Turn Over)

2

			Compare	
Zener	break	rdown	and a	valanche
	down.			1+3

- 2. (a) What is a rectifier circuit? Show that ripple factor for a half-wave rectifier is 1.21.
 - (b) Briefly describe the working of a capacitor filter.

Or

Describe how a semiconductor diode can be used as a full-wave rectifier. Derive its expression for efficiency. 3+4=7

- 3. (a) What is meant by transistor biasing?
 What are the essentials of a transistor biasing circuit?

 1+3=4
 - (b) In a transistor, if $I_C = 4.9 \text{ mA}$ and $I_E = 5 \text{ mA}$, what is the value of α ?

Or

- (a) Explain, with the diagram, the input characteristic of a CE transistor.
- (b) State the advantages of transistor connection in CE mode over other modes of operations.

12G-100/280a

(Continued)

3

4

4.	(a)	Explain how transistor can be used as an amplifier. What do you mean by operating point of a transistor circuit? 3+2=5
	(b)	In a transistor circuit, collector load is $4 \text{ k}\Omega$ whereas zero signal collector current is 1 mA. Find the operating point if $V_{CC}=5 \text{ k}\Omega$.
	(a)	What is frequency response of an amplifier?
	(b)	Describe class A, class B, class C and class AB of amplifiers. Illustrate your answer with suitable diagrams.
5.	(a)	What do you understand by hybrid parameter of a transistor? 2
	(b)	Draw a hybrid equivalent circuit of common-collector transistor. Deduce an expression for voltage gain and discuss the validity of this expression. 1+3+1=5 Or
	(a)	With a neat circuit diagram, explain the operation of an RC coupled transistor amplifier. Obtain the expression for its mid-frequency voltage gain. 1+2+2=5
	(b)	Define bandwidth of an amplifier. 2
