2013

(2nd Semester)

ELECTRONICS

SECOND PAPER

(Semiconductor Physics)

(PART : A—OBJECTIVE)

(Marks : 20)

SECTION—A

(Marks : 5)

Each question carries 1 mark

Answer all questions

Tick (✓) the correct answer in the brackets provided:

1.	Diff who	fusion capacitance is en	obse	erved	in a	. p-n	junction	diode
	(a)	reverse biased	()				
15	(b)	forward biased	(.)			<u>.</u>	
	(c)	leakage current is	small		()		
ěl.	(d)	leakage current is	large	а	()		

/300

2	The	min-nla	factor	of.	_	half-wave		:-
4.	THE	Tiphie	ractor	OI 8	d.	nan-wave	recuner	18

(a) 1·21 ()

(b) 0.482 () (c) 1.42 ()

(d) 0.842 ()

3. The current amplification factor α_{dc} is given by

(a) $\frac{I_C}{I_E}$ ()

(b) $\frac{I_C}{I_B}$ ()

(c) $\frac{I_B}{I_E}$ ()

(d) $\frac{I_B}{I_C}$ ()

4. In determining the load line, for $I_C = 0$

 $(a) \quad V_{CE} = V_{CB} \qquad ()$

(b) $V_{CE} = 0$ ()

 $(c) \quad V_{CE} = V_{CC} \qquad ()$

(d) Vcc = 0 www.gzrsc.edu.in

5.		an iges			-	transi	stor	amplifier,	mid-frequency
	(a)	50	Hz	to	20 kF	Ηz	()	
	(b)	20	Hz	to	20 kI	Ηz	()	
	(c)	50	Hz	to	200 I	łz	()	
	(d)	20	Нz	to	200 F	Ī2	(Y	

SECTION—B

(Marks: 15)

Each question carries 3 marks

Answer any five questions

1. Write note on the effect of biasing on depletion layer of a junction diode.

2. What is space-charge capacitance of a *p-n* junction? What is the typical value of space-charge capacitance?

3. Write short note on the leakage currents in a transistor for CB and CE configuration.

4. What are α and β of a transistor? Write the relation between them.

5. Explain in brief the working of a class B push-pull amplifier.

6. Write note on the characteristics of class A and class B amplifiers.

7. What is bandwidth? Define bandwidth in terms of dB for an amplifier having maximum voltage gain 100.

8. What are the advantages and disadvantages of transformer coupled amplifier?

2013

(2nd Semester)

ELECTRONICS

SECOND PAPER

(Semiconductor Physics)

Full Marks: 55

Time: 2 hours

(PART : B—DESCRIPTIVE)

(Marks: 35)

The figures in the margin indicate full marks for the questions

- 1. (a) What is the significance of a potential barrier in a diode?
 - (b) Explain with suitable diagram the energy band of a semiconductor. What is the difference between energy level and energy band? 3+2=5

G13-100/300a

(Turn Over)

2

Or

	(a)	What do you mean by Zener breakdown and avalanche breakdown?	2
	(b)	What do you mean by extrinsic semiconductor? Explain the formation of <i>p</i> -type semiconductor materials. 1+4=	5
2.	(a)	characteristic of a Zener diode with	3
	(b)	Describe briefly the working of a <i>p-n</i> junction full-wave rectifier. Give the expression for efficiency of a full-wave rectifier.	4
		Or .	
	(a)		3
	(b)		4
3.	(a)	operation. What is the necessary biasing condition for conduction in	2
	(b)		

Or

(a) What do you mean by thermal runaway

	in a transisto			2	
(b)	Describe with	suitable	diagram,	the	
	transistor sta	tic charac	teristic of	CE	
	configuration.	Mention	its differe	ence	

4. (a) What is a linear amplifier? Explain quiescent point of a transistor amplifier with suitable diagram showing cut-off and saturation.

with CB characteristics.

(b) Explain in brief the frequency response curve of an amplifier. What is the resonant frequency? 2+1=3

Or

- (a) What do you mean by power gain? Explain how transistor amplifies. 1+3=4
- (b) Write in brief power relations for class B amplifier. What is the maximum overall efficiency of a class A amplifier coupled with a transformer? 2+1=3
- 5. (a) What do you mean by forward and reverse parameters in hybrid parameters of a transistor? Illustrate the expression for current gain. 2+1+1=4

3+2=5

(b) A transistor used in CB connection has the following set of parameters: $h_{fb} = -0.98, \ h_{ib} = 36 \, \Omega, \ h_{rb} = 5 \times 10^{-4},$ $h_{ob} = 10^{-6} \text{ mho, } \text{ with } R_S = 2 \text{K} \text{ and }$ $R_C = 10 \text{K}$ Calculate (i) r_{in} , (ii) r_{out} , (iii) A_i and

Or

(iv) A_{ij} .

With a suitable diagram, explain the frequency response of an RC coupled transistor amplifier. Write down the merits and demerits of this amplifier. 1+4+2=7

3