2017

(CBCS)
(3 ${ }^{\text {rd }}$ Semester)
ELECTRONICS

Paper : EL-301
 (Electronic Devices and Amplifier)

Full Marks : 75
Time : 3 hours
(PART : A - OBJECTIVE)
(Marks: 25)
The figures in the margin indicate full marks for the questions
SECTION - A
(Marks:10)
Put a Tick (\checkmark) mark against the correct answer in the brackets provided for it : $1 \times 10=10$

1. A JFET is \qquad driven device.
(a) an electron
()
(b) a current
(c) a voltage
()
(d) both current and voltage
2. A MOSFET has \qquad terminals.
(a) two
(c) four
(b) three
(d) five
3. The small leakage current in a diode during reverse bias is due to
(a) minority carrier
(b) majority carrier
(c) large applied voltage
(d) barrier potential
4. An SCR behaves as
(a) thermal switch
(b) bidirectional switch
(c) mechanical switch
(d) unidirectional switch
5. The frequency response of transformer coupling is
(a) good
()
(b) very good
(c) excellent
()
(d) poor
6. The maximum efficiency of a class B push-pull amplifier is
(a) 100%
(c) 50%
()
(b) 78.5%
(d) 85%
7. The phase of the output signal is of \qquad with the input signal for $\mathrm{R}-\mathrm{C}$ coupled amplifier.
(a) 0°
()
(b) 90°
(c) 180°
()
(d) 360°
8. The dimension of $h_{i e}$ parameter is
(a) mho ()
(b) ohm
(c) farad ()
(d) henry
9. The feedback component in an integrator is made of
(a) resistor ()
(b) inductor
()
(c) capacitor ()
(d) combination of resistor and capacitor
10. The common-mode rejection ratio of an ideal differential amplifier is
(a) zero
()
(b) infinity
(c) less than unity
()
(d) greater than unity

SECTION - B
(Marks: 15)
Answer the following questions:

1. What are the differences between JFET and bipolar transistor?

Or
A JFET has a drain current of 5 mA . If $I_{D S S}=10 \mathrm{~mA}$ and $V_{G S}$ (off) $=-6 \mathrm{~V}$, find the values of (a) $V_{G S}$ and (b) V_{P}.
2. What do you mean by forward biasing and reverse biasing of a $p-n$ junction diode?

Or

Define 90° phase control in SCR.
3. Write the importance of blocking capacitor in class A power amplifier.

> Or

For a class B amplifier, using a supply of $V_{C C}=12 \mathrm{~V}$ and driving a load of 10Ω, determine the (a) maximum load power, (b) d.c. input power and (c) collector efficiency.

EL/III/EC/05/58
4. How will you achieve impedance matching in a transformer coupling?

> Or

Write a short note on multistage amplifier.
5. Derive the expression for gain in a non-inverting OP-AMP.

Or
Draw a block diagram of typical OP-AMP and explain the function of each block.
(PART: B - DESCRIPTIVE)
(Marks: 50)
The figures in the margin indicate full marks for the questions

1. (a) Explain the construction and working of a JFET. $2+3=5$
(b) Define JFET parameters and establish the relationship between them. $3+2=5$

Or

2. (a) Give the constructional details of enhancement type of MOSFET and show its output characteristics.
(b) Compare various properties of JFET and MOSFET. 3
(c) Write down any two applications of FET.
3. (a) What do you mean by energy level and energy band of an electron? $1+1=2$
(b) Classify solid in terms of energy band. 4
(c) With necessary diagram, explain the V-I characteristics of $p-n$ junction diode. 4

Or

4. (a) Describe the construction of UJT and derive the value of intrinsic stand-off ratio from its equivalent circuit diagram.
$3+2-5$
(b) Explain the two-transistor analogy of SCR.
5. (a) Draw the power diagram of transformer coupled class A power amplifier and locate the Q-point. Show the efficiency of transformer-coupled class A amplifier is 50% in an ideal case.
(b) Mention the special characteristics that distinguish a tuned amplifier from other amplifiers. State their advantages and disadvantages.

Or

6. (a) Explain the difference between a voltage amplifier and a power amplifier.
(b) Briefly discuss the performance quantities of power amplifiers.
(c) A class A transformer-coupled power amplifier has zero signal collector current of 50 mA . If the collector supply voltage is 5 V , find (i) the maximum a.c. power output, (ii) the power rating of transistor and (iii) the maximum collector efficiency.
7. (a) What do you understand by hybrid parameters? What are their dimensions? $1+2=3$
(b) With a neat circuit diagram, explain the working of transformer-coupled transistor amplifier.

Or

8. (a) Show the relation $R_{L}^{\prime}=n^{2} R_{L}$, where the symbols have their usual meanings in a transformer.
(b) With a neat labeled diagram, explain the working of R-C coupled transistor amplifier.
9. (a) What are the characteristics of an ideal operational amplifier?
(b) Find an expression for the overall gain in an OP-AMP in the case of inverting configuration4
(c) Write down the applications of OP-AMP. 3

Or

10.(a) Write the equation for common-mode rejection ratio (CMRR) and also mention some importances of CMRR.
(b) What is the main function of a differential amplifier? With a circuit diagram, explain the operation of a single-ended differential amplifier.
(c) What are virtual ground and summing point of an OP-AMP?

