2017

(Pre-CBCS)

(3 ${ }^{\text {rd }}$ Semester)

ELECTRONICS

THIRD PAPER

(Electronic Devices and Amplifier)

Full Marks :55
Time : $2^{1 ⁄ 2}$ hours
(PART : A - OBJECTIVE)
(Marks: 20)
The figures in the margin indicate full marks for the questions
SECTION - I
(Marks : 5)
Put a Tick (\checkmark) mark against the correct answer in the brackets provided :

1. For operation of enhancement-only n-channel MOSFET, the value of gate voltage has to be
(a) zero
(b) low positive
(c) high positive
()
(d) high negative
2. A UJT has
(a) two p - n junctions
(b) one $p-n$ junction
(c) three p - n junctions
(d) four $p-n$ junctions
3. When used in a circuit, the Zener diode is always
(a) forward-biased ()
(b) connected in series
(c) troubled by overheating ()
(d) reverse-biased
4. The voltage gain of a tuned amplifier is \qquad at resonant frequency.
(a) minimum
(b) maximum
(c) zero
()
(d) half-way between maximum and minimum
5. If $R_{f}=1000 \mathrm{k} \Omega, R_{1}=1 \mathrm{k} \Omega$, then the voltage gain of an inverting amplifier is equal to
(a) 1000
()
(b) -1000
(d) -0.0001

SECTION - II

(Marks : 15)

Answer any five questions of the following :

1. What are Breakdown Devices? Why are they referred to as Latching Devices? Name any two of them.
2. With suitable diagram, explain the $V-I$ characteristics of SCR.
3. How will you transform a sine wave into a square wave using Zener diode?
4. Show that the overall maximum efficiency of class B push-pull amplifier is 78.5%.
5. Define input bias current of OP-AMP. A certain OP-AMP has bias current of $50 \mu \mathrm{~A}$ and $49.3 \mu \mathrm{~A}$. Find the input bias current.
6. Define the parameters of FET and derive the relation among these parameters.
7. Explain the formation of $p-n$ junction diode.
8. Mention how PIN diode can be used as high frequency switching device.
(PART: B - DESCRIPTIVE)
(Marks: 35)
The figures in the margin indicate full marks for the questions
9. (a) Explain the construction and working of a JFET. What is the difference between a JFET and a bipolar transistor?
(b) Why is the depletion type MOSFET also called the dual mode MOSFET?

Or

(c) With suitable diagram, discuss the construction and working of depletion MOSFET.
(d) Compare MOSFET with JFET in terms of their characteristics.
2. (a) Discuss biasing of a $p-n$ junction diode with the help of energy band diagrams. What are Zener and avalanche break-downs?
(b) Find the value of intrinsic stand-off ratio of a UJT if $R_{B B}=10 \mathrm{k} \Omega$ and $R_{B 2}=4 \mathrm{k} \Omega .2$
(c) Derive the efficiency and ripple factor of a full-wave rectifier.
(d) Explain firing and triggering of an SCR. Also explain 90° phase control of an SCR.
3. (a) What is PIN diode? Explain the function of I layer in a PIN diode. $1+2=3$
(b) Why is liquid crystal used in LCD? With a diagram, explain the working of liquid crystal display.

Or

(c) Draw a circuit diagram of transistor series regulator and discuss the use of transistor in transistor series regulator.
(d) Show with diagram how Zener diode can be used for meter protection.
4. (a) With a neat diagram, explain the working of double-tuned amplifier. Discuss its frequency response.
(b) Write the difference between power amplifier and voltage amplifier.

Or

(c) Draw a neat circuit diagram of class B push-pull amplifier and explain its working.
(d) A double-tuned circuit operates at an operating frequency of 10 MHz having coefficient of coupling of 0.02. Determine the bandwidth.
5. (a) Derive an expression for the overall gain in an OP-AMP in the case of inverting configuration. Explain the input impedance and output impedance of inverting amplifier.
(b) Define common mode signal and differential mode signal.

Or

(c) What are the characteristics of an ideal OP-AMP? Why is the voltage at the summing point of a negative feedback OP-AMP reduced almost to zero?
(d) Define input offset voltage and input bias current in an OP-AMP.

