2017

(Pre-CBCS)

(3rd Semester)

ELECTRONICS

THIRD PAPER

(Electronic Devices and Amplifier)

Full Marks :55

Time : $2\frac{1}{2}$ hours

(PART : A – OBJECTIVE) (*Marks* : 20)

The figures in the margin indicate full marks for the questions

SECTION – I (Marks: 5)

Put a Tick	(✓)n	nark against the	correct answer in	the brackets	provided :	1×5=5
------------	------	------------------	-------------------	--------------	------------	-------

1.	For operation of enha	ancem	nent-o	nly <i>n</i> -c	hannel MOSFET, t	he value of	gate	voltage has
	(a) zero	()		(b) low posit	ive	()
	(c) high positive	()		(d) high nega	ative	()
2.	A UJT has							
	(a) two <i>p</i> - <i>n</i> junctions		()	(b) one <i>p</i> - <i>n</i> j	unction	()
	(c) three <i>p</i> - <i>n</i> junction	S	()	(d) four <i>p-n</i> j	unctions	()
3.	When used in a circu	iit, the	e Zene	r diode	e is always			
	(a) forward-biased		()	(b) connecte	d in series	()
	(c) troubled by overhe	eating	()	(d) reverse-b	oiased	()
4.	The voltage gain of a (a) minimum	tuned (ampl	ifier is	at resonant	frequency.		
	(b) maximum	()					
	(c) zero	()					
	(d) half-way between	maxir	, num a	and mi	nimum ()		
5.	If $R_f = 1000 \text{ k}\Omega$, $R_1 = 1 \text{ k}\Omega$, then the voltage gain of an inverting amplifier is equal to							
	(a) 1000	()		(b) – 1000	()		
	(c) 0.0001	()		(d) – 0.0001	()		

SECTION – II (*Marks* : 15)

Answer any five questions of the following :

- 1. What are Breakdown Devices? Why are they referred to as Latching Devices? Name any two of them.
- 2. With suitable diagram, explain the V-I characteristics of SCR.
- 3. How will you transform a sine wave into a square wave using Zener diode?
- 4. Show that the overall maximum efficiency of class B push-pull amplifier is 78.5%.
- 5. Define input bias current of OP-AMP. A certain OP-AMP has bias current of 50 μA and 49.3 $\mu A.$ Find the input bias current.
- 6. Define the parameters of FET and derive the relation among these parameters.
- 7. Explain the formation of p-n junction diode.
- 8. Mention how PIN diode can be used as high frequency switching device.

(PART: B – DESCRIPTIVE) (Marks : 35)

The figures in the margin indicate full marks for the questions

1.	<i>(a)</i> Explain the construction and working of a JFET. What is the difference b JFET and a bipolar transistor?	etween a 2+2+1=5
	(b) Why is the depletion type MOSFET also called the dual mode MOSFET?	2
	Or	
	<i>(c)</i> With suitable diagram, discuss the construction and working of depletion MOSFET.	2+2=4
	(d) Compare MOSFET with JFET in terms of their characteristics.	3
2.	(a) Discuss biasing of a <i>p</i> - <i>n</i> junction diode with the help of energy band diagr What are Zener and avalanche break-downs?	rams. 3+2=5
	(b) Find the value of intrinsic stand-off ratio of a UJT if R_{BB} = 10 k Ω and R_{B2} =	= 4 kΩ. 2

 $3 \times 5 = 15$

- (c) Derive the efficiency and ripple factor of a full-wave rectifier.
- (d) Explain firing and triggering of an SCR. Also explain 90° phase control of an SCR.
- 3. (a) What is PIN diode? Explain the function of I layer in a PIN diode. 1+2=3
 - (b) Why is liquid crystal used in LCD? With a diagram, explain the working of liquid crystal display. 1+3=4

Or

- (c) Draw a circuit diagram of transistor series regulator and discuss the use of 1+3=4transistor in transistor series regulator.
- (d) Show with diagram how Zener diode can be used for meter protection. 3
- 4. (a) With a neat diagram, explain the working of double-tuned amplifier. Discuss its 3+2=5frequency response.
 - (b) Write the difference between power amplifier and voltage amplifier.

Or

- (c) Draw a neat circuit diagram of class B push-pull amplifier and explain its working. 1+4=5
- (d) A double-tuned circuit operates at an operating frequency of 10 MHz having coefficient of coupling of 0.02. Determine the bandwidth.
- 5. (a) Derive an expression for the overall gain in an OP-AMP in the case of inverting configuration. Explain the input impedance and output impedance of inverting amplifier. 3+2=5
 - (b) Define common mode signal and differential mode signal.

Or

- (c) What are the characteristics of an ideal OP-AMP? Why is the voltage at the summing point of a negative feedback OP-AMP reduced almost to zero? 3+2=5
- (d) Define input offset voltage and input bias current in an OP-AMP. 2

3

2+2=4

2

2

2