V/mat (vi)

2016

(5th Semester)

MATHEMATICS

SIXTH PAPER (MATH-352)

(Real Analysis)

Full Marks: 75
Time : 3 hours

(PART : B—DESCRIPTIVE)

(Marks : 50)
The figures in the margin indicate full marks
for the questions
Answer five questions, taking one from each Unit
UniT-I

1. State and prove Lindelof covering theorem.

$$
2+8=10
$$

2. (a) Let $\left\{G_{n}\right\}$ be a sequence of non-empty closed sets such that-
(i) $G_{n+1} \subset G_{n} \quad \forall n$
(ii) G_{1} is bounded

Then prove that the intersection $\cap G_{n}, n \in N$, is nonempty.

UNIT-III

5. (a) If $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ are functions of $y_{1}, y_{2}, y_{3}, \ldots, y_{n}$ and $y_{1}, y_{2}, y_{3}, \ldots, y_{n}$ are functions of $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$, then prove that

$$
\begin{aligned}
& \frac{\partial\left(u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right)}{\partial\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)} \\
& \quad=\frac{\partial\left(u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right)}{\partial\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right)} \cdot \frac{\partial\left(y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right)}{\partial\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)}
\end{aligned}
$$

(b) Prove that a function which is differentiable at a point is also continuous at the point.
6. (a) Consider the function $f: R^{2} \rightarrow R$ defined by

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y^{2}}{x^{2}+y^{4}}, & \text { if } x \neq 0 \\
0, & \text { if } x=0
\end{array}\right.
$$

Show that the directional derivatives of f at $(0,0)$ in all directions exist but the function is not continuous at $(0,0)$.
(b) Prove that a function which is differentiable at a point admits of partial derivatives at the point.
UNIT—IV
7. State and prove Schwarz's theorem. $2+8=10$
8. (a) Show that for the function

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x^{2} y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\
0, & (x, y)=(0,0)
\end{array}\right.
$$

$f_{x y}(0,0)=f_{y x}(0,0)$, even though the conditions of Schwarz's theorem are not satisfied.
(b) Examine the function

$$
f(x, y)=y^{2}+x^{2} y+a x^{4}
$$

for extreme values.
UniT-V
9. (a) Prove that the space R^{n} of all ordered n-tuples with the metric d, where

$$
d(x, y)=\left[\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right]^{1 / 2}
$$

is a complete metric space.
(b) Give an example to show that the intersection of an infinite number of open sets is not open.
10. (a) Show that every compact subset of a metric space (X, d) is closed.
(b) Prove that every closed subset of a compact metric space is compact. 3

Subject Code : V/MAT (vi)

To be filled in by the Candidate

DEGREE 5th Semester

(Arts / Science / Commerce /
) Exam., 2016
Subject
Paper

INSTRUCTIONS TO CANDIDATES

1. The Booklet No. of this script should be quoted in the answer script meant for descriptive type questions and vice versa.
2. This paper should be ANSWERED FIRST and submitted within 1 (one) Hour of the commencement of the Examination.
3. While answering the questions of this booklet, any cutting, erasing, overwriting or furnishing more than one answer is prohibited. Any rough work, if required, should be done only on the main Answer Book. Instructions given in each question should be followed for answering that question only.

Booklet No. A

Date Stamp
\qquad

To be filled in by the Candidate

DEGREE 5th Semester
(Arts / Science / Commerce /
) Exam., 2016
Roll No.
Regn. No.

Subject \qquad
Paper \qquad

Descriptive Type
Booklet No. B \qquad

Signature of Invigilator(s)

$\mathbf{V} / \mathrm{mat}($ vi)

2016

(5th Semester)

MATHEMATICS

SIXTH PAPER (MATH-352)
(Real Analysis)
(PART : A—OBJECTIVE)
(Marks: 25)
Answer all questions
SECTION—A
(Marks : 10)
Each question carries 1 mark
Put a Tick ∇ mark against the correct answer in the box provided:

1. Every infinite and bounded set has at least one limit point. This is the statement of
(a) Bolzano-Weierstrass theorem
(b) Heine-Borel theorem
(c) Lindelof covering theorem
(d) Cantor intersection theorem

(2)

2. If $E \subset R^{n}$, then a point $a \in R^{n}$ is called a limit point of E, if every neighbourhood of the point a contains
(a) an infinite number of points of the set E
(b) a finite number of points of the set E
(c) no point of the set E
(d) None of the above
3. If $\lim _{x \rightarrow a} f(x)=b$, where $x=\left(x_{1}, x_{2}\right), \quad a=\left(a_{1}, a_{2}\right)$, $b=\left(b_{1}, b_{2}\right)$ and $f=\left(f_{1}, f_{2}\right)$, then
(a) $\lim _{x \rightarrow a} f_{1}(x)=b_{2}$
(b) $\lim _{x \rightarrow a} f_{2}(x)=a_{2}$
(c) $\lim _{x \rightarrow a} f_{1}(x)=b_{1}$ and $\lim _{x \rightarrow a} f_{2}(x)=b_{2}$
(d) None of the above
4. A set is said to be compact if it is
(a) bounded
(b) both bounded and closed
(c) open
(d) None of the above

(3)

5. If $u=\cos x, v=\sin x \cos y, w=\sin x \sin y \sin z$, then

$$
\frac{\partial(u, v, w)}{\partial(x, y, z)}
$$

is equal to
(a) $\sin ^{3} x \sin ^{2} y \sin z$
(b) $\sin x \sin ^{2} y \sin ^{3} z$
(c) $-\sin ^{3} x \sin ^{2} y \sin z$
(d) None of the above
6. If

$$
f(x, y)=\left\{\begin{array}{cc}
x y\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right), & (x, y) \neq(0,0) \\
0, & (x, y)=(0,0)
\end{array}\right.
$$

then $f_{y}(x, 0)$ is equal to
(a) x
(b) y
(c) 0
(d) None of the above
7. If (a, b) be a point of the domain contained in R^{2} of a function f such that f_{x} and f_{y} are both differentiable at (a, b), then
(a) $f_{x y}(a, b)>f_{y x}(a, b)$
(b) $f_{x y}(a, b)<f_{y x}(a, b)$
(c) $f_{x y}(a, b)=f_{y x}(a, b)$
(d) None of the above

(4)

8. The function $f(x, y)=y^{2}+4 x y+3 x^{2}+x^{3}$ has
(a) a minimum at $(0,0)$
(b) a maximum at $(0,0)$
(c) neither a minimum nor a maximum at $(0,0)$
(d) None of the above
9. Let (X, d) be a complete metric space and Y be a subspace of X. Then Y is complete if and only if it is
(a) closed in (X, d)
(b) open in (X, d)
(c) both closed and open in (X, d)
(d) None of the above
10. Let A and B be two subsets of a metric space (X, d). Then
(a) $A \subset B \Rightarrow \bar{B} \subset \bar{A}$
(b) $\overline{A \cup B}=\bar{A} \cup \bar{B}$
(c) $\overline{A \cap B}=\bar{A} \cup \bar{B}$
(d) None of the above

(5)

SECTION-B

(Marks : 15)
Each question carries 3 marks
Answer the following :

1. Show that a set is closed if and only if its complement is open.

(6)

2. Define convex set and state the intermediate value theorem.

(7)

3. Show that the function f, where

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{3}-y^{3}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\
0, & (x, y)=(0,0)
\end{array}\right.
$$ is continuous at $(0,0)$.

(8)

4. Give an example of a function $f(x, y)$ such that the conditions of Young's theorem are not satisfied but $f_{x y}(0,0)=f_{y x}(0,0)$. Justify it.

(9)

5. In any metric space (X, d), show that the union of an arbitrary family of open sets is open.
