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Answer one question from each Unit

UNIT—I

1. (a) Show that the modulus of sum of two

complex numbers is always less than or

equal to the sum of their moduli. 5

(b) Show that arg
z z

z z
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3 4

-

-

æ

è
ç
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ø
÷ is the angle

between the lines joining z2  to z1 and

z4  to z3  on the Argand plane. Also find

the conditions if two lines are

perpendicular or parallel. 5
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2. (a) If z1 and z2  are two complex numbers,

then prove that | | | | | |z z z z1 2
2

1
2

2
2+ = +  if 

and only if z z1 2  is purely imaginary. 5

(b) If z1, z2 , z3  are the vertices of an

isosceles triangle, right angled at the

vertex z2 , then prove that 

   z z z z z z1
2

2
2

3
2

2 1 32 2+ + = +( ) 5

UNIT—II

3. (a) Show that the continuity is a necessary

but not the sufficient condition for the

existence of a finite derivative. 5

(b) Show that the function f z xy( ) | |=

where, z x iy= +  is not analytic at the

origin, although the Cauchy-Riemann

equations are satisfied at that point. 5

4. (a) If u x xy x y= - + - +3 2 2 23 3 3 1, then

determine harmonic conjugate function

and find the corresponding analytic

function in terms of z. 5

(b) For what value of z, the function w

defined by the following equations

ceases to be analytic?

    z i= +log r f; w i= +r f f(cos sin ) 5

8G/224a ( Continued )



( 3 )

UNIT—III

5. (a) State and prove Cauchy-Hadamard

formula for the radius of convergence. 5

(b) Find the domain of convergence of the

series 
iz

i

n
-

+
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è
ç
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ø
÷å

1

2
. 5

6. (a) Find the radiis of convergence of the

following power series : 2×3=6

(i)
zn

n2 1+
å

(ii) 1
1

1 1

1 2 1

2+ +
+ +

+
+

a b

c
z

a a b b

c c
z

.

.

.( ). .( )

. . .( )
L

(b) If R1 and R2  are the radii of convergence 

of the power series Sa zn
n  and Sb zn

n

respectively, then find the radius of the

convergence of the power series 

Sa b zn n
n . 4

UNIT—IV

7. (a) Find the value of the integral—

( )x y ix dz
i

- +
+

ò
2

0

1

(i) along the straight line from z = 0 to 

z i= +1 ;

(ii) along the real axis from z = 0 to z = 1

and then along a line parallel to the 

imaginary axis from z = 1 to z i= +1 . 5
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(b) Show that if a function f z( ) is analytic

in a region D, then its derivative at any

point z a=  of D is also analytic in D, and 

is given by

¢ =
-

òf a
i

f z dz

z aC
( )

( )

( )

1

2 2p

where C is any closed contour in D

surrounding the point z a= . 5

8. (a) Evaluate by Cauchy integral formula

zdz

z z iC ( )( )9 2- +
ò

where C is the circle | |z = 2. 5

(b) If f z( ) is a continuous function in a

domain D and if for every closed contour 

C in the domain D f z dz
C

( ) =ò 0, then

prove that f z( ) is analytic within D. 5

UNIT—V

9. (a) Obtain the Laurent’s series which

represents the function
1

1 22( ) ( )+ +z z

in the region | |z > 2. 5

(b) Define singularity of a complex function. 

With suitable example, explain the terms

isolated and non-isolated singularities. 5
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10. (a) Find the singularities of the following

functions : 4

(i) sin
1

1 -

æ
è
ç

ö
ø
÷

z
 at z = 1

(ii) cosec
1

z
 at z = 0

(b) State and prove the maximum modulus

theorem.
6

H H H
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MATH/V/07

2 0 1 7

( 5th Semester )

MATHEMATICS

SEVENTH PAPER (MATH–353)

( Complex Analysis )

( PART : A—OBJECTIVE )

( Marks : 25 )

SECTION—A

( Marks : 10 )

Each question carries 1 mark

Put a Tick R mark against the correct answer in the box
provided :

1. The modulus of exp ( )1 + i  is

(a) e   £

(b) 1/e   £

(c) 1   £

(d) -e   £

/224



2. If z is the conjugate of z, then

(a) | | | |z z>    £

(b) | | | |z z<    £

(c) | | | |z z=    £

(d) | | | |z z= -    £

3. The derivative of e y i yx ( cos sin )+  is

(a) e x    £

(b) e y   £

(c) e x iy-    £

(d) e x iy+    £

4. The analytic function whose imaginary part is e yx cos  is

(a) ez    £

(b) iez    £

(c) ie z-    £

(d) e z-    £

( 2 )
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5. If lim | | /
n n

nu l®¥ =1 , then the series å un  is convergent if

(a) l >1   £

(b) l <1   £

(c) l =1   £

(d) l ³1   £

6. The power series å n zn!  will converge

(a) if z = 0   £

(b) if | |z =1   £

(c) if | |z >1   £

(d) for all real values of z   £

7. If C is given by the equation | |z a R- = , then the value

of 
dz

z aC -ò  is

(a) 2pi   £

(b) pi   £

(c) -2pi   £

(d) -pi   £

( 3 )
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8. A continuous arc without multiple points is called a

(a) Jordan arc   £

(b) continous arc   £

(c) contour   £

(d) rectifiable arc   £

9. The function 
sin ( )

( )

z a

z a

-

-
 at z a=  has

(a) removable singularity   £

(b) non-isolated singularity   £

(c) isolated singularity   £

(d) a pole   £

10. Zeros of the function 
z

ez

2 4+
 at z = ¥ are

(a) 2i   £

(b) -2i   £

(c) ± 2i   £

(d) z   £

( 4 )
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SECTION—B

( Marks : 15 )

Each question carries 3 marks

Answer all questions

Answer the following :

1. If a b2 2 1+ = , then find the value of

1

1

+ +

+ -

a ib

a ib

( 5 )
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2. If w f z= ( ) is an analytic function, z x iy= + , show that

dw

dz
i

w

r
= -( cos sin )q q

¶

¶

where x r= cosq, y r= sin q.

( 6 )
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3. Examine the convergence of the series å zn .

( 7 )
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4. Evaluate z dz
i

i 3

2

5 3

- +

+

ò
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5. Give the statements of Taylor’s and Laurent’s theorems.

H H H

( 9 )
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