2015

(5th Semester)

MATHEMATICS

PAPER: MATH-354(B)

(Probability Theory)

Full Marks: 75

Time: 3 hours

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

UNIT-I

- 1. (a) Show that if an event A is independent of the events $B, B \cap C$ and $B \cup C$, then it is also independent of C.
 - (b) Prove that for any two events A and B $P(A \cap B) \le P(A) \le P(A \cup B) \le P(A) + P(B) \qquad 5$

(Turn Over)

5

2. State and prove Bayes' theorem.

10

UNIT-II

3. For the binomial distribution $(q+p)^n$, prove that

$$\mu_{r+1} = pq \left(nr \mu_{r-1} + \frac{d\mu_r}{dp} \right)$$

where μ_r is the rth central moment. Hence obtain μ_2 , μ_3 and μ_4 . Also find out β_1 and β_2 .

4. (a) The mean and the variance of a binomial distribution are 4 and $\frac{4}{3}$ respectively. Find (i) the probability of two successes and (ii) the probability of more than two successes.

(b) The probability distribution function of a random variable X is

$$f(x) = \begin{cases} x & \text{for } 0 < x \le 1 \\ 2 - x, & \text{for } 1 \le x < 2 \\ 0 & \text{for } x \ge 2 \end{cases}$$

Compute the cumulative distribution function of X.

5

5

UNIT-III

5. (a) For the following bivariate probability distribution of X and Y, find the following:

6

(i)
$$P(X \le 1, Y = 2)$$

(ii)
$$P(X \le 1)$$

(iii)
$$P(Y=3)$$

(iv)
$$P(Y \le 3)$$

(v)
$$P(X < 3, Y \le 4)$$

$Y \rightarrow$	1	2	3	4	5	6
X↓	7 -		(4)			
0 ·	0	0	$\frac{1}{32}$	$\frac{2}{32}$	$\frac{2}{32}$	$\frac{3}{32}$
1	<u>1</u>	16	18	1/8	1/8	<u>1</u> 8
2	$\frac{1}{32}$, <u>1</u>	<u>1</u> 64	1 64	0	<u>2</u> 64

(b) The joint density function of X, Y is given as

$$f(x, y) = 2, \quad 0 < x < y < 1$$

= 0, elsewhere

Examine whether X and Y are independent or not.

4

6. (a) The joint probability density function of two random variables X and Y is given by

$$f(x, y) = \frac{9(1+x+y)}{2(1+x)^4(1+y)^4}, \quad 0 < x < \infty$$
$$0 < y < \infty$$

G16/142a

(Turn Over)

UNIT-III

5. (a) For the following bivariate probability distribution of X and Y, find the following:

6

(i)
$$P(X \le 1, Y = 2)$$

(ii)
$$P(X \le 1)$$

(iii)
$$P(Y=3)$$

(iv)
$$P(Y \le 3)$$

(v)
$$P(X < 3, Y \le 4)$$

$Y \rightarrow X \downarrow$	1	2	3	4	5	6
0	0	0	$\frac{1}{32}$	<u>2</u> 32	<u>2</u> 32	3 32
1	<u>1</u> 6	<u>1</u>	<u>1</u> 8	1/8	1/8	<u>1</u> 8
2	$\frac{1}{32}$,32	<u>1</u>	<u>1</u> 64	0	<u>2</u> 64

(b) The joint density function of X, Y is given as

$$f(x, y) = 2, 0 < x < y < 1$$

= 0, elsewhere

Examine whether X and Y are independent or not.

6. (a) The joint probability density function of two random variables X and Y is given by

$$f(x, y) = \frac{9(1+x+y)}{2(1+x)^4(1+y)^4}, \quad 0 < x < \infty$$

	(b)	Obtain Y, and X = x. If X a uous proba produ	nd Y rand bility	are	two	inde	epend	dent en fi	cont	in-	6
				τ	Jnit-	–IV					
7.	(a)	A san from 3 ar numb	a bo	x coi efect	ntain ives.	ing l Fin	d t	ems	oi wh	uch	7
	(b)	If X is	s a ra	ando: ar (X	m va) = E	riable (X ²)	e, the - [E(2	en pr X)] ²	ove t	hat	3
8.	foll	lculate lowing eir son	heig	hts (relati in in	ion (ches)	oeffi of fa	cient ather	for (<i>X</i>)	the and	10
		<i>X</i> :	65	66	67	67	68	69	70	72	
		Y :	67	68	65	68	72	72	69	71	

To spussoul viers Unit-V.

9. (a) Find the moment generating function of Poisson distribution.

3

- (b) Find the moment generating function of exponential distribution.
- 3
- (c) Define gamma distribution and then find the first four moments about the origin.
- 4
- 10. For a normal distribution, show that its even order central moments are given by the relation (about mean)

$$\mu_{2n} = (2n-1)(2n-3)...3.1.\sigma^{2n}$$
 10

D 100-4-001 (2)

(al) Name of the above

2015

(5th Semester)

MATHEMATICS

PAPER: MATH-354(B)

(Probability Theory)

(PART : A-OBJECTIVE)

(Marks: 25)

SECTION—A (Multiple choice)

man divended (Marks: 10) and another of the

Each question carries 1 mark

Answer all questions

Put a Tick ☑ mark against the correct answer in the box provided: 1×10=10

1.	The	conditional	probability	of	В	given	Α	is
----	-----	-------------	-------------	----	---	-------	---	----

(a)
$$\frac{P(A\cap B)}{P(B)}$$

(b)
$$\frac{P(A \cup B)}{P(A)}$$

(c)
$$\frac{P(A \cap B)}{P(A)}$$

(d)
$$P(A)P(B)$$

2. Let A and B be events with $P(A) = \frac{3}{8}$, $P(B) = \frac{1}{2}$ and

 $P(A \cap B) = \frac{1}{4}$, then $P(A \cup B)$ is

- (a) $\frac{5}{8}$
- (b) $\frac{1}{2}$
- (c) $\frac{3}{8}$
- (d) $\frac{3}{4}$
- 3. The parameters of a binomial distribution with mean 8 and variance 4 are
 - (a) $n=2, p=\frac{1}{4}$
 - (b) $n = 16, p = \frac{1}{2}$
 - (c) n = 32, $p = \frac{1}{4}$
 - (d) None of the above
- 4. The characteristic function of binomial distribution is
 - (a) $(q + pe^{it})^n$
 - (b) $(q + pe^{it})$
 - (c) $(qp e^{it})^n$
 - (d) None of the above \Box

V/MAT (viii) (B)/142

					X and Y, t			23
	(a)	for all X	and Y) (4 (4) (4	(m)	
	(b)	if X and	d Y are	identical		1 1		
	(c)	if X and	d Y are	independ	lent 🗆			
	(d)	None of	f the abo	ove	□ Office of H			
					rd of older			
6.	II V	ar(X) = 1	2, then	var (3X ±	5) is equal			
	(a)	13			Proping 2			
	(b)	18			SUBSTILLEY	> 21800		
	(c)	5			the above		M. ()	
	(d)	-1					Tr 50	
7.	The	e mean	of a nor	mal distr	ibution is 50	0, its m	ode	will
	(a)	25						
	(b)	40						(0)
	(c)	50				5 6		
	(d) All of	the abo	ove				
377	MAT	/:\ /B\ / 1	142			5.000		

8.	The	mean	and	variance	of	exponential	dist	ributio	วท
•	with	paran	neter	θ are				•	

(a)
$$\frac{1}{\theta}$$
, $\frac{1}{\theta}$

(b)
$$\frac{1}{\theta}$$
, $\frac{1}{\theta^2}$

(c)
$$\theta$$
, θ^2

(d) None of the above
$$\Box$$

10. The mean and variance of the geometric distribution are

(a)
$$\frac{p}{q}$$
, $\frac{q}{p^2}$

(b)
$$\frac{p}{q}$$
, $\frac{p^2}{q}$

(c)
$$\frac{q}{p}$$
, $\frac{q}{p^2}$

(d)
$$\frac{q}{p}$$
, $\frac{p^2}{q}$

V/MAT (viii) (B)/142

SAINER DAY THAT

SECTION—B (Very short answer)
(Morks 15)

Each question carries 3 marks

Answer all questions

 If A and B are independent events, then A and B are also independent events. Prove it. 2. Is it possible to have a binomial distribution with mean 2 and variance 62

V/MAT (viii) (B)/142

3. Show that if X has Poisson distribution with parameter λ , then $E(X) = \lambda$.

 Find the moment generating function of geometric distribution. 5. Prove that the moment generating function of gamma distribution is

$$M_X(n = (1 - n^{-n}, |t| < 1)$$