2016

(1st Semester)

MATHEMATICS

FIRST PAPER

(Calculus)

Full Marks: 75

Time: 3 hours

(PART : B—DESCRIPTIVE)

(*Marks*: 50)

The figures in the margin indicate full marks for the questions

Answer **one** question from each Unit

Unit—I

1. (a) Draw the graph of the function defined by

$$x^2$$
; when $x = 0$
 $f(x)$ x ; when 0 $x = 1$
 $\frac{1}{x}$; when $x = 1$

Discuss whether f(x) is continuous at x = 1.

- (b) If $y = \cos(m\sin^{-1}x)$, then show that $(1 \quad x^2)y_{n-2} \quad (2n-1)xy_{n-1} \quad (n^2 \quad m^2)y_n$ and find y_n (0).
- 2. (a) Using definition, show that

$$\lim_{x \to 6} \sin x = \frac{1}{2}$$

5

(b) Evaluate: 5

(i)
$$\lim_{x \to 0} \frac{e^x}{x} \frac{e^x}{\sin x} \frac{2x}{\sin x}$$

(ii)
$$\lim_{x \to 2} \frac{x^3}{x} = \frac{8}{2}$$

Unit—II

- **3.** (a) State and prove Rolle's theorem.
 - (b) Show that for $0 x \frac{2}{2}$ $\frac{2}{x} \frac{\sin x}{x} 1$
- **4.** (a) Expand $\cos x$ in an infinite series in powers of x and hence show that

$$\sin^2 x \quad x^2 \quad \frac{1}{3}x^4 \quad \frac{2}{9}x^6 \quad \cdots \quad x \quad R$$

(Turn Over) G7/21a WWW.QZrSC.edu.in

5

(b) Find the intervals in which

$$f(x) 2x^3 15x^2 36x 1$$

is monotonic increasing or monotonic decreasing.

UNIT—III

5. (a) Evaluate: 3+3

(i)
$$\frac{dx}{x\sqrt{1-x^3}}$$

- (ii) $(x \quad 1)\sqrt{x^2 \quad x \quad 1} \ dx$
- (b) Evaluate $\int_{a}^{b} e^{x} dx$ from first principle.
- **6.** (a) Evaluate

$$\int_{0}^{2} \sin^{n} x \, dx$$

where n is a positive integer.

(b) Prove that

$$0^{\frac{1}{2}} \frac{x \, dx}{\sec x \, \csc x} = \frac{1}{4} = \frac{1}{\sqrt{2}} \log (\sqrt{2} - 1) = 5$$

UNIT—IV

7. (a) If $u x^2 \tan^{-1} \frac{y}{x} y^2 \tan^{-1} \frac{x}{y}$, xy 0,

then show that

$$\frac{^2u}{x\ y} \quad \frac{x^2}{x^2} \quad \frac{y^2}{y^2}$$

(b) Let $f: \mathbb{R}^2$ R be a function defined by

$$f(x, y) = \begin{cases} \frac{x^2y}{x^4 y^2} & \text{; } (x, y) & (0, 0) \\ 0 & \text{; } (x, y) & (0, 0) \end{cases}$$

Test the continuity of f at (0, 0).

- **8.** (a) If $V \log_e \frac{x^3 + y^3}{x^2 + y^2}$, then show that $x \frac{V}{x} + y \frac{V}{y} = 1$
 - (b) Find the area included between the curves $y^2 + 4ax$ and $x^2 + 4ay$.

Unit-V

9. (a) Prove that a monotonic increasing sequence which is bounded above is convergent.

5

6

4

(5)

(b) Show that the sequence $\{S_n\}$, where

$$S_n = \frac{1^3}{n^4} \quad \frac{2^3}{n^4} \quad \cdots \quad \frac{n^3}{n^4}$$

converges to $\frac{1}{4}$.

5

10. (a) Show that the series

$$\frac{1}{1^p}$$
 $\frac{1}{2^p}$ $\frac{1}{3^p}$...

is divergent for p = 1.

5

(b) Test the convergence of the series

$$1 \quad \frac{1}{2.3} \quad \frac{1.3}{2.4.5} \quad \frac{1.3.5}{2.4.6.7} \quad \cdots$$

5

Subject Code : $\mathbf{I}/$ MAT (i)	Booklet No. A
	Date Stamp
To be filled in by the Candidat	:e
DEGREE 1st Semester (Arts / Science / Commerce /) Exam., 2016	
Subject	
INSTRUCTIONS TO CANDIDATES	DEGREE 1st Semester
1. The Booklet No. of this script should quoted in the answer script meant i descriptive type questions and viversa.	for) Exam., 2016
2. This paper should be ANSWERED FIRST and submitted within 1 (one) Ho of the commencement of the Examination.	Regn. Nohe
3. While answering the questions of the booklet, any cutting, erasing, over writing or furnishing more than o	er-
answer is prohibited. Any rough wor if required, should be done only the main Answer Book. Instruction given in each question should followed for answering that question.	rk, Descriptive Type on ns Booklet No. B be
only. Signature of Signature Scrutiniser(s) Examiner	of Signature of

/21

2016

(1st Semester)

MATHEMATICS

FIRST PAPER

(Calculus)

(PART : A—OBJECTIVE)

(*Marks*: 25)

Answer **all** questions

SECTION—I

(Marks: 10)

Each question carries 1 mark

Put a Tick \square mark against the correct answer in the box provided :

1.	If $f(x)$	2 f (1	x)	x^2	2	x	R,	then	f(x) is	given	by
	J ()	.) (,				,	-	J ()		- 5

(a)
$$\frac{(x-2)^2}{3}$$

(b)
$$x^2$$
 2 \Box

(c) 1
$$\Box$$

(d) None of the above
$$\Box$$

/21

2.	If $y = x^{n-1} \log x$, then xy_n is equal to
	(a) $\lfloor n \rfloor$
	(b) $\lfloor n \rfloor$
	(c) $\lfloor n \rfloor 2$
	(d) None of the above \Box
3.	If $f(x) \sin x \cos x$, then $f(x) = 0$ has a root in the interval
	(a) $0, \frac{1}{2}$
	(b) $\frac{1}{2}$, \Box
	(c) $\frac{1}{2}$, 0 \Box
	(d) $\frac{3}{4}$, $\frac{3}{4}$
4.	$f(x)$ e^x can be expanded in powers of $(x - 2)$ by using
	(a) Maclaurin's theorem
	(b) Taylor's theorem \Box
	(c) Leibnitz's theorem \Box

I/MAT (i)**/21**

(d) Euler's theorem \Box

- 5. $\int_0^{/2} \frac{\sin x}{\sin x \cos x} dx$ is equal to
 - (a) $\frac{}{4}$
 - (b) $\frac{}{2}$
 - (c) 0 \Box
 - (d) None of the above
- **6.** $\int_{0}^{2} [x] dx$ is equal to
 - (a) 2 \Box
 - (b) 0 □
 - (c) 1 \Box
 - (d) None of the above \Box
- **7.** If $z = xy f + \frac{x}{y}$, then $x \frac{z}{x} = y \frac{z}{y}$ is equal to
 - (a) 0 \Box
 - (b) z □
 - (c) $\frac{1}{z}$
 - (d) 2z

8.	(x, y)	$\lim_{(1, 1)} \frac{\sin(xy - 1)}{\tan(2xy - 2)} \text{ is equal to}$
	(a)	2
	(b)	$\frac{1}{2}$ \square
	(c)	0
	(d)	None of the above \Box
9.	The	s sequence $\{u_n\}$, where $u_n = 1 - (-1)^n$ is
	(a)	convergent \square
	(b)	bounded but not convergent \Box
	(c)	unbounded \Box
	(d)	None of the above \Box
10.	The	e series 1 $\frac{1}{2^2}$ $\frac{1}{3^2}$ $\frac{1}{4^2}$ is

(c) oscillating \Box (d) None of the above

(a) convergent \Box

(b) divergent □

(5)

SECTION—II

(*Marks*: 15)

Each question carries 3 marks

1. Evaluate $\lim_{x} 1 \frac{1}{x}^{x}$.

2. Show that the equation $\cos x + x \sin x = 0$ has a root in the interval $0, \frac{1}{2}$.

(7)

3. If $y = \int_{x}^{x^2} \sin u \, e^u \, du$, then find $\frac{dy}{dx}$.

4. Find the volume of the solid bounded by the surface $z \sqrt{1 + x^2 + y^2}$ and the plane z = 0.

(9)

5. Prove that

$$\lim_{m} \frac{1^{m} 2^{m} 3^{m} \cdots n^{m}}{n^{m-1}} \frac{1}{m-1}; m = 1$$

G7—350**/21** I/MAT (i)