Subject : Mathematics Paper Name : Algebra Paper No: II Semester : II Semester

A. Multiple choice questions [25 (5 from each unit)]

1. The number of generators of a cyclic group of order 8 is

- a) 2 b) 7
- c) 4
- d) 8

2. The identity element of the group of all positive rational numbers under the composition $a * b = \frac{ab}{2}$ is

- a) 1 b) 2 c) 0
- d) -2

3. In multiplicative group of rational numbers, the order of 2 is

a) 0
b) Infinite
c) 1
d) -1

4. The number of binary compositions on a finite set A having n elements is

a) n^{n^2} b) 2^{n^2} c) n^n d) n!

5. The identity element in a group (Z, \times), where Z is a set of integers and \times is an ordinary multiplication, is

a) 0
b) 1
c) -1
d) None of the above

6. When 45^{16} is divided by 32, then the remainder is

- a) 1
- b) 32
- c) 44
- d) 16

7. A homomorphism $f : G \rightarrow G'$ is said to be an isomorphism, if f is

- a) One-to-one mapping
- b) into mapping
- c) one-to-one and into mapping
- d) one-to-one and onto mapping

8. If f is a homomorphism of G into G', then the set K of all those elements of G which are mapped by f onto the identity element of G' is called

a) Kernel of the homomorphism f

- b) Homomorphism f
- c) Kernel of the isomorphism f
- d) Isomorphism f
- 9. A homomorphism of a group into itself is called
 - a) an isomorphism
 - b) kernel of a homomorphism
 - c) an endomorphism
 - d)an automorphism

10. When 7^{10} is divided by 11, then the remainder is

- a) 7
- b)1
- c) 8
- d) 6

11. If f(x) and g(x) be two polynomials of degrees m and n respectively, then f(x). g(x) is a polynomial of degree

- a) m.n
- b) m+n
- c) m/n
- d) n/m

12. The value of the remainder , when $x^3 + 5x^2 + 1$ is divided by x + 3, is

- a) 18
- b) -19
- c) 27
- d) 19

13. The expression $x^5 - 61x + p$ is divided by (x + 1), then the value of p is

- a) 62
- b) 60
- c) -60
- d) 6

14. If f(x) and g(x) are non-zero polynomials in F[x], then f(x) + g(x) is non-zero and $\deg(f(x) + g(x))$ is

- a) $\deg(f(x)) + \deg(g(x))$ b) max{deg(f(x)), deg(g(x))} c) deg{f(x)}. deg{g(x)}
- d) min{deg(f(x)), deg(g(x))}

15. If f(x) is divided by (ax - b), then the remainder is

a) $f\left(-\frac{b}{a}\right)$ b) $f\left(\frac{b}{a}\right)$ c) f(-a)d) *f*(*a*)

16. If f(x) and g(x) are non-zero polynomials of degree 3 and 5 respectively. Then the value of deg(f(x)+g(x)) and deg(f(x),g(x)) are:

(a) 3 & 5 (b) 3 & 8 (c) 5 & 15 (d) 5 & 8

17. If $f(x) = 3x^2 + 5x - 8$ is divided by (x+1), then the remainder is: (a) 10 (b) 8 (c) -10

(d) -8

18. The expansion of $x^4 - 4x^{-3} + 3x^2 + 3x + 7$ on the power of (x-1) is: (a) $(x-1)^4 - (x-1)^2 + (x-1) + 5$ (b) $(x-1)^3 - 4(x-1)^2 + (x+1) + 10$

- (c) $(x-1)^4 3(x-1)^2 + 2(x-1) + 10$ (d) $(x-1)^4 - 3(x-1)^2 + (x-1) + 10$

19. Which of the following theorem declare thatfor a polynomial with integer coefficients $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, if there exist prime number *p*, such that *p* divides each a_i , $i \neq n$

p does not divide a_n

- p^2 does not divide a_0 , then f(x) is irreducible over rationals ?
- (a) Eisenstein's Irreducibility Criterion
- (b) Unique factorization theorem
- (c) Euclidean algorithm
- (d) Remainder theorem

20. If f(x) be a polynomial and (x-a) is a factor of f(x) then f(a) is equal to:

- (a) 2
- (b) 0
- (c) a

(d) 1

21. Which of the following statement is false ?

- (a) A polynomial of degree *n* has n-roots.
- (b) A polynomial of degree *n* has more than n-roots.
- (c) Surd roots occur in pairs.
- (d) Imaginary roots occur in pairs.

22. The equation $x^{12} - x^4 + x^3 - x^2 + 1 = 0$ has.

- (a) 3 real roots and 3 complex roots
- (b) At least six complex roots.
- (c) 2 real roots and 4 complex roots
- (d) At least 6 real roots.

23. If the sum of two roots of the equation $x^3 - 5x^2 - 16x + q = 0$ is zero, then the value of q is:

- (a) 90
- (b) 80
- (c) 70
- (d) 60

24. If α , β , γ be the root of the equation $x^3 + x + 1 = 0$, then the value of $\alpha^2 + \beta^2 + \gamma^2$ IS:

- (a) -2
- (b) 1
- (c) 2
- (d) 1

25. The De Moivre's form of complex number *3-4i* is:

- (a) $(\cos\theta + i\sin\theta)$
- (b) 5($\cos\theta i\sin\theta$)
- (c) $5(\cos\theta + i\sin\theta)$
- (d) ($\cos\theta i\sin\theta$)

B. Fill in the blanks:

1. The union of two subgroups of a group is ______ a subgroup.

2. If every element of a group is its own inverse, the G is _____

3. In the set of integer I, inverse of $a \in I$ with respect to addition is _____

4. If $f : G \to G'$ is a homomorphism and f(G) is the homomorphic image of G in G', then f(G) is ______ of G'

5. Every isomorphic image of a cyclic group is _____

6. Let $f: G \to G'$ be a group of homomorphism. Then $Ker f = \{e\}$ if and only if f is an

7. If the leading coefficient of a polynomial f(x) is 1, then f(x) is said to be _____

8. A polynomial f(x) is completely divisible by (x-h) if and only if _____

9. A polynomial of degree 2 or 3 is irreducible over the field F if and only if it has _____ in F

10. The leading coefficient of a polynomial of degree *n* cannot be equal to____.

11. The value of k for which the expression $4x^3 - 3x^2 + 2x + k$ is divisible by x+2 is _____.

12. When $4x^5 + 3x^3 + 6x^2 + 5$ is divided by 2x+1, the remainder is_____.

13. The common root of $x^3 - 2x^2 - x + 2 = 0$ and $x^3 + 3x^2 + 2x = 0$ is_____.

14. The range of values of k for which the equation $x^4 + 4x^3 - 8x^2 + k = 0$ has all real roots in _____ and ____.

15. If α , β , γ are the roots of the cubic equation $a_0x^3 + a_1x^2 + a_2x + a_3 = 0$, then $\sum \alpha \beta$ is equal to____.

Answer Key:

В.	1. Not necessarily	2. Abelian	3. –а	4. a subgroup		
	24.(a) 25.(c)					
	12. (d) 13. (c) 14. (a) 15	5. (b) 16.(c) 17.(c)	18.(d) 19.(a) 20.(b)	21.(b) 22. (d) 23.(b)		
A.	1. (c) 2. (b) 3. (b) 4.	(a) 5. (b) 6. (a)	7. (d) 8. (a) 9. (c)	10. (b) 11. (b)		

5.	1. Not necessarily	2. Abelian	3. –а	4. a subgroup
	5. Cyclic	6. Isomorphism	7. Monic	8. $f(h) = 0$
	9. no roots	10. 0	11.48	12.6
	131	14.0 and 3	15. a ₂ /a ₀	