Subject : Mathematics

Paper Name : Algebra
Paper No: II
Semester : II Semester

A. Multiple choice questions [25 (5 from each unit)]

1. The number of generators of a cyclic group of order 8 is
a) 2
b) 7
c) 4
d) 8
2. The identity element of the group of all positive rational numbers under the composition $a *$ $b=\frac{a b}{2}$ is
a) 1
b) 2
c) 0
d) -2
3. In multiplicative group of rational numbers, the order of 2 is
a) 0
b) Infinite
c) 1
d) -1
4. The number of binary compositions on a finite set A having n elements is
a) $n^{n^{2}}$
b) $2^{n^{2}}$
c) n^{n}
d) n !
5. The identity element in a group (Z, x), where Z is a set of integers and \times is an ordinary multiplication, is
a) 0
b) 1
c) -1
d) None of the above
6. When 45^{16} is divided by 32 , then the remainder is
a) 1
b) 32
c) 44
d) 16
7. A homomorphism $f: G \rightarrow G^{\prime}$ is said to be an isomorphism, if f is
a) One-to-one mapping
b) into mapping
c) one-to-one and into mapping
d) one-to-one and onto mapping
8. If f is a homomorphism of G into G^{\prime}, then the set K of all those elements of G which are mapped by f onto the identity element of G^{\prime} is called
a) Kernel of the homomorphism f
b) Homomorphism f
c) Kernel of the isomorphism f
d) Isomorphism f
9. A homomorphism of a group into itself is called
a) an isomorphism
b) kernel of a homomorphism
c) an endomorphism
d) an automorphism
10. When 7^{10} is divided by 11 , then the remainder is
a) 7
b) 1
c) 8
d) 6
11. If $f(x)$ and $g(x)$ be two polynomials of degrees m and n respectively, then $f(x) \cdot g(x)$ is a polynomial of degree
a) m.n
b) $m+n$
c) m / n
d) n / m
12. The value of the remainder, when $\mathrm{x}^{3}+5 \mathrm{x}^{2}+1$ is divided by $x+3$, is
a) 18
b) -19
c) 27
d) 19
13. The expression $x^{5}-61 x+p$ is divided by $(x+1)$, then the value of p is
a) 62
b) 60
c) -60
d) 6
14. If $f(x)$ and $g(x)$ are non-zero polynomials in $F[\mathrm{x}]$, then $f(x)+g(x)$ is non-zero and $\operatorname{deg}(f(x)+g(x))$ is
a) $\operatorname{deg}(f(x))+\operatorname{deg}(g(x))$
b) $\max \{\operatorname{deg}(f(x)), \operatorname{deg}(g(x))\}$
c) $\operatorname{deg}\{f(x)\} \cdot \operatorname{deg}\{g(x)\}$
d) $\min \{\operatorname{deg}(f(x)), \operatorname{deg}(g(x))\}$
15. If $f(x)$ is divided by (ax -b), then the remainder is
a) $f\left(-\frac{b}{a}\right)$
b) $f\left(\frac{b}{a}\right)$
c) $f(-a)$
d) $f(a)$
16. If $f(x)$ and $g(x)$ are non-zero polynomials of degree 3 and 5 respectively. Then the value of $\operatorname{deg}(f(x)+g(x))$ and $\operatorname{deg}(f(x) . g(x))$ are:
(a) $3 \& 5$
(b) $3 \& 8$
(c) $5 \& 15$
(d) $5 \& 8$
17. If $f(x)=3 x^{2}+5 x-8$ is divided by $(x+1)$, then the remainder is:
(a) 10
(b) 8
(c) -10
(d) -8
18. The expansion of $x^{4}-4 x^{-3}+3 x^{2}+3 x+7$ on the power of $(x-1)$ is:
(a) $(x-1)^{4}-(x-1)^{2}+(x-1)+5$
(b) $(x-1)^{3}-4(x-1)^{2}+(x+1)+10$
(c) $(x-1)^{4}-3(x-1)^{2}+2(x-1)+10$
(d) $(x-1)^{4}-3(x-1)^{2}+(x-1)+10$
19. Which of the following theorem declare that-
for a polynomial with integer coefficients $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$, if there exist prime number p, such that $\quad p$ divides each $a_{i}, i \neq n$
p does not divide a_{n} p^{2} does not divide a_{0}, then $\mathrm{f}(\mathrm{x})$ is irreducible over rationals?
(a) Eisenstein's Irreducibility Criterion
(b) Unique factorization theorem
(c) Euclidean algorithm
(d) Remainder theorem
20. If $f(x)$ be a polynomial and ($x-a$) is a factor of $f(x)$ then $f(a)$ is equal to:
(a) 2
(b) 0
(c) a
(d) 1
21. Which of the following statement is false?
(a) A polynomial of degree n has n-roots.
(b) A polynomial of degree n has more than n-roots.
(c) Surd roots occur in pairs.
(d) Imaginary roots occur in pairs.
22. The equation $x^{12}-x^{4}+x^{3}-x^{2}+1=0$ has.
(a) 3 real roots and 3 complex roots
(b) At least six complex roots.
(c) 2 real roots and 4 complex roots
(d) At least 6 real roots.
23. If the sum of two roots of the equation $x^{3}-5 x^{2}-16 x+q=0$ is zero, then the value of q is:
(a) 90
(b) 80
(c) 70
(d) 60
24. If α, β, γ be the root of the equation $x^{3}+x+1=0$, then the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$ IS:
(a) -2
(b) 1
(c) 2
(d) 1
25. The De Moivre's form of complex number 3-4i is:
(a) $(\cos \theta+\operatorname{isin} \theta)$
(b) $5(\operatorname{Cos} \theta-i \sin \theta)$
(c) $5(\operatorname{Cos} \theta+i \sin \theta)$
(d) $(\cos \theta-i \sin \theta)$

B. Fill in the blanks:

1. The union of two subgroups of a group is \qquad a subgroup.
2. If every element of a group is its own inverse, the G is \qquad
3. In the set of integer I, inverse of $a \in I$ with respect to addition is \qquad
4. If $f: G \rightarrow G^{\prime}$ is a homomorphism and $f(G)$ is the homomorphic image of G in G^{\prime}, then $f(G)$ is \qquad of G^{\prime}
5. Every isomorphic image of a cyclic group is \qquad
6. Let $f: G \rightarrow G^{\prime}$ be a group of homomorphism. Then $\operatorname{Ker} f=\{e\}$ if and only if f is an
7. If the leading coefficient of a polynomial $f(x)$ is 1 , then $f(x)$ is said to be \qquad
8. A polynomial $f(x)$ is completely divisible by ($x-h$) if and only if \qquad
9. A polynomial of degree 2 or 3 is irreducible over the field F if and only if it has \qquad in F
10. The leading coefficient of a polynomial of degree n cannot be equal to \qquad .
11. The value of k for which the expression $4 x^{3}-3 x^{2}+2 x+k$ is divisible by $x+2$ is \qquad .
12. When $4 x^{5}+3 x^{3}+6 x^{2}+5$ is divided by $2 x+1$, the remainder is \qquad .
13. The common root of $x^{3}-2 x^{2}-x+2=0$ and $x^{3}+3 x^{2}+2 x=0$ is \qquad .
14. The range of values of k for which the equation $x^{4}+4 x^{3}-8 x^{2}+k=0$ has all real roots in \qquad and \qquad .
15. If α, β, γ are the roots of the cubic equation $a_{0} x^{3}+a_{1} x^{2}+a_{2} x+a_{3}=0$, then $\sum \alpha \beta$ is equal to \qquad .

Answer Key:

A.

1. (c)
2. (b) 3. (b)
3. (a) 5. (b)
4. (a) 7. (d)
5. (a) 9. (c)
6. (b) 11. (b)
7. (d) 13. (c)
8. (a) 15. (b) 16.(c)
17.(c)
18.(d) 19.(a) 20.(b)
21.(b) 22. (d) 23.(b)
24.(a) 25.(c)
B.

2. Abelian	3. - a	4. a subgroup
6. Isomorphism	7. Monic	8. $f(\mathbf{h})=0$
10. 0	11. 48	12. 6
14. 0 and 3	15. a a $2 / a_{0}$	

