Subject: Mathematics Paper name: Algebra Paper no: 2 Semester: II

A Multiple choice question

1. Diagonal elements of a skew-symmetric matrices is

- a) 0
- b) 1

c) 4

d) 2

2.Let A be any square matrix. Then 1/2 (A + A^T) a) Hermitian b) skew-hermitian c) symmetric d) skew-symmetric

3.If $A = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 4 & 5 \\ 2 & 3 & 4 \end{bmatrix}$. Then A^{-1} a) $\begin{bmatrix} 1 & 3 & -4 \\ -2 & 2 & -2 \\ 1 & -3 & 4 \end{bmatrix}$ b) $1/2 \begin{bmatrix} 1 & 3 & -4 \\ -2 & 2 & -2 \\ 1 & -3 & 4 \end{bmatrix}$ c) $1/2 \begin{bmatrix} 1 & 0 & 1 \\ 3 & 9 & 5 \\ 2 & 2 & 4 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 3 & 4 \\ 2 & -2 & 2 \\ 2 & 3 & 4 \end{bmatrix}$ 4.The rank of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2 \end{bmatrix}$ is a) 1 b) 4 c) 5 d) 3

5.If A and B are Hermitian, then AB-BA is skew-hermitian then AB+BA is

a) Hermitian

b) skew-hermitian

c) symmetric

d) skew-symmetric 6. The number of binary compositions of finite set A having n elements is a) n^{n^2} b) 2^{n^2} c)nⁿ d)n! 7. The identity element of integer I with respect to addition is a)1 b)0 c)e d)-1 8. If the inverse of a is a^{-1} . Then the inverse of a^{-1} is a) a⁻¹ b) 2a c) a d) a² 9.A necessary and sufficient condition for non-empty subset H of a group G to be a sub-group is a) $a \in H$, $b \in H \Rightarrow ab \notin H$ b) $a \in H$, $b \in H \Rightarrow a^{-1}b \in H$ c) a \in H, b \in H \Rightarrow ab⁻¹ \in H d) $a \in H$, $b \in H \Rightarrow ab \in H$ 10. The number of generators of a cyclic group of order 16 is a) 16 b) 1 c) 4 d) 8 11.If H is subgroup of a finite group G the index of H is a) G=o(G)/o(H)b) $G \neq o(G)/o(H)$ c) G = o(H)/o(G)d) o(G)=o(H)/G12. If G is a finite group of order n and $a \in G$ then a) $a^e = n$ b) $a^n = e$ c) a⁻¹ = e d) an = e13.When 99²⁰ is divided by 25, the remainder is a) 20

b) 5

c) 15 d) 1 14.A homomorphism of a group into itself is called a) an isomorphism b) kernel of a homomorphism c) an endomorphism d) an automorphism 15.Let $f:G \rightarrow G$ be a group homomorphism. Then ker $f=\{e\}$ if and only if f is a) an automorphism b) an isomorphism c) an endomorphism d) an isomorphic image 16.If f(x) is divided by ax+b, then the remainder is a) f(-b/a)b) f(b/a) c) f(a/b)d) f(-a/b) 17.When $f(x)=3x^2+5x-8$ is divided by (x-2), the remainder is a) 2 b) 12 c) 8 d) 14 18. If a polynomial f(x) is divided by (x-a) and if the remainder R=f(a)=0, then (x-a) is a factor of a) f(a) b) f(x) c) (x-a) d) a 19. The polynomial x^4+x^2+1 is a factor of a) x⁶-1 b) x¹²-2 c) x¹²-1 d) x¹²-4 20.The expression x^{5} -61x+p is divisible by x+1.The value of p is a) 62 b) -60 c) 60 d) 0 21. The value of $\binom{1 + \cos\theta + i\sin\theta}{1 + \cos\theta - i\sin\theta}^5$ is a) $\cos 5\theta$ + $i \sin 5\theta$ b) $\cos\theta$ + isin θ

Downloaded from www.gzrsc.edu.in

c) $\cos\theta$ - $i\sin\theta$ d) $\cos 5\theta$ - $i \sin 5\theta$ 22. The De-Moivre's form of -1 is a) $\cos \pi - i \sin \pi$ b) $\cos \pi + i \sin \pi$ c) $\cos 2\pi - i \sin 2\pi$ d) $\cos 2\pi + i \sin 2\pi$ 23. If α, β, γ are the roots of the equation $3x^3-4x^2+7=0$; then $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$ is a) 1 b) 2 c) 0 d) 3 24. The equation whose roots are reciprocals of the roots $6x^3+5x^2-1=0$ is a) $6+5y-y^3=0$ b) $6y+5y^2-y^3=0$ c) $6y^2 + 5y^3 - y^4 = 0$ d) $6y+5-y^3=0$ 25. If the sum of two roots of the equation $x^3-5x^2-16x+p=0$ is zero, then the value of p is a) 0 b) 16 c) 80 d) 20 B. Fill up the blanks 1.An mxn matrix is a square matrix if _____ 2.Let A be a square matrix and if |A| = 0, then A is _____. 3.Row rank of a matrix A is equal to _____ rank of A. 4. The number of commutative binary operation in A is ______. 5. Every subgroup of a cyclic group is . 6.Suppose G is a group and H is any subgroup of G. Let a be any element of G then Ha is called of H in G generated by a. 7. The order of each subgroup of a finite group is a ______ of the order of the group. 8.Every group of order is cyclic. 9. If f is a homomorphism of G into G, then the set K of all those elements of G which are mapped by f onto the identity elements of G` is called ______ of the homomorphism of f. 10.If f(x) is divided by x+a, the remainder is 11. The remainder obtained when $4x^5+3x^3+6x^2+5$ is divided by 2x+1 is _____. 12.If a polynomial f(x) is divided by (x-a), then the remainder is ______. 13.One root of the equation $2x^3-21x^2+42x-16=0$ whose roots are known to be in GP is _____. 14.The roots of cubic equation are 2+i, 2-i and 3.The equation is ______ 15.The equation of third degree with real coefficients whose two roots are 2 and i is ______.

KEY ANSWER A Multiple choice question 1.a) 2.c) 3.b) 4.d) 5.a) 6.a) 7.b) 8.c) 9.b) 10.d) 11.a) 12.b) 13.d) 14.c) 15.b) 16.a) 17.d) 18.b) 19.c) 20.c) 21.a) 22.b) 23.c) 24.a) 25.c)

B Fill up the blanks 1.m=n 2.singular matrix 3.column $4.(n^{2}+n)/2$ 5.cyclic 6.the right coset 7.divisor 8.prime 9.kernel 10.f(-a) 11.6 12.f(a) 13.2 14.x³-7x²+17x-15=0 $15.x^{3}-2x^{2}+x-2=0$