Subject: Mathematics
Paper name: Algebra
Paper no: 2
Semester: II
A Multiple choice question
1.Diagonal elements of a skew-symmetric matrices is
a) 0
b) 1
c) 4
d) 2
2. Let A be any square matrix. Then $1 / 2\left(A+A^{\top}\right)$
a) Hermitian
b) skew-hermitian
c) symmetric
d) skew-symmetric
3.If $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 3 & 4 & 5 \\ 2 & 3 & 4\end{array}\right]$. Then A^{-1}
a) $\left[\begin{array}{ccc}1 & 3 & -4 \\ -2 & 2 & -2 \\ 1 & -3 & 4\end{array}\right]$
b) $1 / 2\left[\begin{array}{ccc}1 & 3 & -4 \\ -2 & 2 & -2 \\ 1 & -3 & 4\end{array}\right]$
c) $1 / 2\left[\begin{array}{lll}1 & 0 & 1 \\ 3 & 9 & 5 \\ 2 & 2 & 4\end{array}\right]$
d) $\left[\begin{array}{ccc}1 & 3 & 4 \\ 2 & -2 & 2 \\ 2 & 3 & 4\end{array}\right]$
4.The rank of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2\end{array}\right]$ is
a) 1
b) 4
c) 5
d) 3
5. If A and B are Hermitian, then $A B-B A$ is skew-hermitian then $A B+B A$ is
a) Hermitian
b) skew-hermitian
c) symmetric
d) skew-symmetric
6.The number of binary compositions of finite set A having n elements is
a) $n^{n^{2}}$
b) $2^{n^{2}}$
c) n^{n}
d) n !
7.The identity element of integer I with respect to addition is
a) 1
b) 0
c) e
d) -1
8.If the inverse of a is a^{-1}. Then the inverse of a^{-1} is
a) a^{-1}
b) $2 a$
c) a
d) a^{2}
9.A necessary and sufficient condition for non-empty subset H of a group G to be a sub-group is
a) $a \in H, b \in H \Rightarrow a b \notin H$
b) $a \in H, b \in H \Rightarrow a^{-1} b \in H$
c) $a \in H, b \in H \Rightarrow a b^{-1} \in H$
d) $a \in H, b \in H \Rightarrow a b \in H$
10.The number of generators of a cyclic group of order 16 is
a) 16
b) 1
c) 4
d) 8
11.If H is subgroup of a finite group G the index of H is
a) $\mathrm{G}=\mathrm{o}(\mathrm{G}) / \mathrm{O}(\mathrm{H})$
b) $\mathrm{G} \neq \mathrm{o}(\mathrm{G}) / \mathrm{o}(\mathrm{H})$
c) $\mathrm{G}=\mathrm{o}(\mathrm{H}) / \mathrm{o}(\mathrm{G})$
d) $o(G)=o(H) / G$
12.If G is a finite group of order n and $\mathrm{a} \in \mathrm{G}$ then
a) $a^{e}=n$
b) $a^{n}=e$
c) $a^{-1}=e$
d) $a n=e$
13. When 99^{20} is divided by 25 , the remainder is
a) 20
b) 5
c) 15
d) 1
14.A homomorphism of a group into itself is called
a) an isomorphism
b) kernel of a homomorphism
c) an endomorphism
d) an automorphism
15.Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ be a group homomorphism. Then ker $\mathrm{f}=\{\mathrm{e}\}$ if and only if f is
a) an automorphism
b) an isomorphism
c) an endomorphism
d) an isomorphic image
16.If $f(x)$ is divided by $a x+b$, then the remainder is
a) $f(-b / a)$
b) $f(b / a)$
c) $f(a / b)$
d) $f(-a / b)$
17.When $f(x)=3 x^{2}+5 x-8$ is divided by $(x-2)$, the remainder is
a) 2
b) 12
c) 8
d) 14
18.If a polynomial $f(x)$ is divided by $(x-a)$ and if the remainder $R=f(a)=0$, then $(x-a)$ is a factor of
a) $f(a)$
b) $f(x)$
c) $(x-a)$
d) a
19.The polynomial $x^{4}+x^{2}+1$ is a factor of
a) $x^{6}-1$
b) $x^{12}-2$
c) $x^{12}-1$
d) $x^{12}-4$
20.The expression $x^{5}-61 x+p$ is divisible by $x+1$. The value of p is
a) 62
b) -60
c) 60
d) 0
21. The value of $\binom{1+\cos \theta+i \sin \theta}{1+\cos \theta-i \sin \theta}^{5}$ is
a) $\cos 5 \theta+i \sin 5 \theta$
b) $\cos \theta+i \sin \theta$
c) $\cos \theta-i \sin \theta$
d) $\cos 5 \theta-i \sin 5 \theta$
22.The De-Moivre's form of -1 is
a) $\cos \pi-i \sin \pi$
b) $\cos \pi+i \sin \pi$
c) $\cos 2 \pi-i \sin 2 \pi$
d) $\cos 2 \pi+i \sin 2 \pi$
23.If α, β, γ are the roots of the equation $3 \mathrm{x}^{3}-4 \mathrm{x}^{2}+7=0$; then $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}$ is
a) 1
b) 2
c) 0
d) 3
24.The equation whose roots are reciprocals of the roots $6 x^{3}+5 x^{2}-1=0$ is
a) $6+5 y-y^{3}=0$
b) $6 y+5 y^{2}-y^{3}=0$
c) $6 y^{2}+5 y^{3}-y^{4}=0$
d) $6 y+5-y^{3}=0$
25.If the sum of two roots of the equation $x^{3}-5 x^{2}-16 x+p=0$ is zero, then the value of p is
a) 0
b) 16
c) 80
d) 20
B. Fill up the blanks
1.An $m \times n$ matrix is a square matrix if \qquad
2. Let A be a square matrix and if $|A|=0$, then A is \qquad
3. Row rank of a matrix A is equal to \qquad rank of A.
4.The number of commutative binary operation in A is \qquad .
5.Every subgroup of a cyclic group is \qquad .
6. Suppose G is a group and H is any subgroup of G . Let a be any element of G then Ha is called \ldots of H in G generated by a.
7.The order of each subgroup of a finite group is a \qquad of the order of the group.
8. Every group of \qquad order is cyclic.
9. If f is a homomorphism of G into G^{\prime}, then the set K of all those elements of G which are mapped by f onto the identity elements of $G^{`}$ is called \qquad of the homomorphism of f.
10.I $f(x)$ is divided by $x+a$, the remainder is \qquad
11. The remainder obtained when $4 x^{5}+3 x^{3}+6 x^{2}+5$ is divided by $2 x+1$ is \qquad -.
12.If a polynomial $f(x)$ is divided by $(x-a)$, then the remainder is \qquad .
13. One root of the equation $2 x^{3}-21 x^{2}+42 x-16=0$ whose roots are known to be in GP is \qquad _.
14.The roots of cubic equation are $2+i, 2-i$ and 3 . The equation is \qquad .
15.The equation of third degree with real coefficients whose two roots are 2 and i is \qquad .

KEY ANSWER
A Multiple choice question
1.a) $2 . c) 3 . b) 4 . d) 5 . a) 6 . a) 7 . b) 8 . c) ~ 9 . b) ~ 10 . d) ~ 11 . a) ~ 12 . b) ~ 13 . d) 14 . c) 15 . b) 16 . a) 17 . d) 18 . b)$ 19.c) 20.c) 21.a) 22.b) 23.c) 24.a) 25.c)

B Fill up the blanks
1.m=n
2.singular matrix
3.column
4. $\left(n^{2}+n\right) / 2$
5.cyclic
6.the right coset
7.divisor
8.prime
9.kernel
$10 . f(-a)$
11.6
12.f(a)
13.2
14. $x^{3}-7 x^{2}+17 x-15=0$
15. $x^{3}-2 x^{2}+x-2=0$

