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Answer one question from each Unit

UNIT—I

1. (a) When do we say that a bounded real

function f  on [ , ]a b  be Riemann

integrable? Show that every continuous

function is Riemann integrable. 1+4=5
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(b) A function f  is bounded and integrable

on [ , ]a b  and there exists a function F

such that ¢ =F f  on [ , ]a b , then prove

that f x dx F b F a
a

b
( ) ( ) ( )= -ò . 5

2. (a) If f1 and f 2  are two bounded and

integrable functions on [ , ]a b , then prove

that f f f= +1 2  is also integrable on

[ , ]a b  and f dx f dx f dx
a

b

a

b

a

b
= +òò ò1 2 . 5

(b) Compute the value of f dx
-ò 1

1
, where 

f x x( ) | |=  by dividing the interval [ , ]-1 1

into 2n equal sub-intervals. 5

UNIT—II

3. (a) Prove that the improper integral

dx

x a na

b

( )-
ò

converges if and only if n < 1. 5

(b) Examine the convergence of the

following improper integrals : 2½+2½=5

(i)
dx

x( )1 20

2

-
ò

(ii)
dx

x( )1 2 2+-¥

¥

ò
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4. (a) If f is continuous in [ , )0 ¥  and

lim ( )
x

x
®

=
0

0f f , lim ( )
x

x
® ¥

=f f1   

then show that

f f
f f

( ) ( )
( )log

ax bx

x
dx

b

a

-
= - æ

è
ç

ö
ø
÷

¥

ò0 0 1 4

(b) Show that

x x dxm n- --ò
1 1

0

1
1( )

exists if and only if m, n are both

positive. 6

UNIT—III

5. (a) Prove that uniformly convergent

improper integral of a continuous

function is itself continuous. 4

(b) If a b> , then show that

log
sin

sin sin
sin

/ a b

a b

d b

a

+

-

æ
è
ç

ö
ø
÷ = æ

è
ç

ö
ø
÷ò

-q

q

q

q
p

p

0

2 1
6

6. (a) Examine the uniform convergence of

the convergent improper integral

cosyx

x
dx

1 21

1

-
-ò

in ( , )-¥ ¥ . 4
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(b) If

f x y
y

x y
( , ) =

+

2

2 2
 and g y f x y dx( ) ( , )= ò0

1

then show that the right-hand and

left-hand derivatives of g at y = 0 differ

from each other and from f x dxy ( , )0
0

1

ò . 6

UNIT—IV

7. (a) Evaluate x y dx dy2 2
òò  over the region

bounded by x = 0, y = 0 and x y2 2 1+ = . 4

(b) Show that if 0 1< <h , then

f x y dy dx f x y dx dy
hh hh

( , ) ( , )
11 11

0òò òò
ì
í
î

ü
ý
þ

= ì
í
î

ü
ý
þ

=

but

f x y dy dx f x y dx dy( , ) ( , )
0

1

0

1

0

1

0

1

òò òò
ì
í
î

ü
ý
þ

¹ ì
í
î

ü
ý
þ

where

f x y
y x

y x
( , )

( )
=

-

+

2 2

2 2 2
6
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8. (a) Change the order of integration in the

integral

dx
e x y

dy
y

x

0

1

2 20

1 1

1 1

2

ò ò
+ - -

-

( )

and hence evaluate it. 5

(b) Show that

x y

x y
dy dx

x y

x y
dx dy

-

+

ì
í
î

ü
ý
þ

=
-

+

ì
í
î

ü
ý
þ

ò òò
( ) ( )20

1

20

1

0

1

0

1

ò
5

UNIT—V

9. (a) Show that

f x
n

x n
n ( ) =

+

is uniformly convergent on [ , ]0 k

whatever k may be but not uniformly

convergent in [ , [0 ¥ . 5

(b) Examine the term-by-term integration

of the series whose sum to first n-terms

is n x x n2 1( )- , 0 1£ £x . 5
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10. (a) Let { }fn  be a sequence of function such

that lim ( ) ( ), [ , ]
n

nf x f x x a b
® ¥

= Î  and let

M f x f xn
x a b

n= -
Î

sup | ( ) ( )|
[ , ]

Then prove that the sequence { }fn

converges uniformly to f  on [ , ]a b  if and

only if Mn ® 0 as n ® ¥. 5

(b) Examine whether the infinite series

1

13 2
1 n nxn ( )+=

¥

å

can be differentiated term-by-term

between any finite limits. 5

H H H
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MATH/VI/10

2 0 1 7

( 6th Semester )

MATHEMATICS

Paper : MATH–362

( Advanced Calculus )

( PART : A—OBJECTIVE )

( Marks : 25 )

Answer all questions

SECTION—A

( Marks : 10 )

Each question carries 1 mark

Put a Tick R mark against the correct answer in the box

provided :

1. For any two partitions P1, P2 on [ , ]a b  of a bounded

function f , we have

(a) L P f U P f( , ) ( , )1 2£    £

(b) L P f U P f( , ) ( , )2 1³    £

(c) U P f L P f( , ) ( , )2 1£    £

(d) U P f U P f( , ) ( , )1 2£    £

/425



2. If a bounded function f  is integrable on [ , ]a b , then

(a) lim ( , )
( )m P a

b
S P f f dx

®¥
= ò    £

(b) lim ( , )
( )m P a

b
S P f f dx

®
= ò

0
   £

(c) f dx f dx
a

b

a

b

ò ò=    £

(d) L P f U P f S P f( , ) ( , ) ( , )= =    £

where L P f U P f( , ), ( , ) and S P f( , ) are the lower Darboux,

upper Darboux and Riemann sum of f  corresponding to

a partition P  of [ , ]a b  with norm m d( )P < .

3. Which of the following definite integrals is an improper

integral?

(a) sin
/

x dx
0

2p

ò    £

(b)
dx

x1 21

1

+-ò    £

(c)
dx

x x( )( )- -ò 2 30

4
   £

(d)
dx

x x( )10

1

+ò    £

( 2 )
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4. The improper integral x e dxn x- -¥

ò
1

0
 is convergent

if and only if

(a) n £1   £

(b) n <1   £

(c) n >1   £

(d) n > 0   £

5. The value of the improper integral

e dxx-¥

ò
2

0
      

is

(a)
p

2
   £

(b)
p

2
   £

(c)
p

2
   £

(d)
p

2
   £

( 3 )
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6. The value of the improper integral

  
dx

a b x+ò cos0

p
      

if a is positive and | |b a< , is

(a)
2

2 2 1 2

p

( ) /a b-
   £

(b)
2

2 2 3 2

p

( ) /a b-
   £

(c)
p

( ) /a b2 2 1 2-
   £

(d)
p

( ) /a b2 2 3 2-
   £

7. The value of the integral

dx

x y
C

+ò          

where C is the curve x at= 2, y at= 2 , 0 2£ £t

is

(a)
1

6
   £

(b) log 4   £

(c) -
1

6
   £

(d) log 2   £

( 4 )
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8. The value of the double integral 
x y

x y
dx dy

-

+òò

over 
1

2
1

1

2
1, ; ,

é

ëê
ù

ûú
 is

(a)
1

2
   £

(b) -
1

2
   £

(c)
p

2
   £

(d) 0   £

9. With regards to uniform and point-wise convergence of

sequences in [ , ],a b  which of the following is true?

(a) Point-wise convergence Þ Uniform

                convergence   £

(b) Uniform convergence Þ Point-wise

                convergence   £

(c) Uniform limit ¹ Point-wise limit   £

(d) All of the above   £

( 5 )
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10. The sequence of function f x nxen
nx( ) = - 2

 is point-wise,

but not uniformly convergent on

(a) [ , ]0 k , where k <1    £

(b) [ , ]0 ¥    £

(c) [ , )0 ¥    £

(d) ( , )0 ¥    £

( 6 )

MATH/VI/10/425



SECTION—B

( Marks : 15 )

Each question carries 3 marks

1. For the integral x dx
0

1

ò , find the upper Riemann integral

corresponding to the division of [0, 1] into 6 equal

interval.

( 7 )
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2. Examine the convergence of the improper integral

x

x
dx

2

50
1+

¥

ò

( 8 )
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3. Given that

     
cosmx

a x
dx

a
e ma

2 20 2+
=

¥ -
ò

p

then prove that

    
x mx

x
dx e msin

1 220 +
=

¥ -
ò

p
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4. Show that

( )x y dy a

C

2 2 346

15
+ =ò

where C is the arc of the parabola y ax2 4=  between

(0, 0) and ( , )a a2 .

( 10 )
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5. Show that

f x
nx

n x
n ( ) =

+1 2 2

is not uniformly convergent in any interval containing zero.

H H H

( 11 )
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