2017

(4th Semester)

PHYSICS

FOURTH PAPER

(Atomic, Nuclear Physics—I and Solid-State Physics—I)

(Pre-revised)

Full Marks: 55

Time: 2½ hours

(PART : B—DESCRIPTIVE)

(*Marks* : 35)

The figures in the margin indicate full marks for the questions

1. What is a mass spectrograph? Describe the construction and working of Aston's mass spectrograph. 1+3+3=7

Or

(a) Define Compton effect. Deduce the equation for Compton shift. 1+4=5

(b)	Differentiate	between	Compton	effect			
	and photoelectric effect.						

2. Describe the construction and working of a cyclotron. What are its limitations? 6+1=7

Or

Describe the determination of mass of a neutron. Classify neutrons according to their kinetic energy.

5+2=7

- **3.** (a) Define nuclear fusion. Give one representative equation.
 - (b) Differentiate between nuclear fusion and nuclear fission.
 - c) Explain the proton-proton cycle.

Or

- (a) Write a short note on nuclear shell model.
- (b) A reactor is producing energy at the rate of 32 10⁶ watts. How many atoms of U-235 undergo fission per second? Assume that on the average, an energy of 200 MeV is released per fission.
- **4.** (a) What do you mean by diffraction of X-rays in crystals? Derive the Bragg's law for X-ray diffraction in crystals. 1+4=5

G7/333a

(Turn Over)

G7**/333a**

(Continued)

2

2

2

3

4

3

(3)

- (b) In a crystal, a lattice plane cuts intercepts of a, 2b and 3c along the three axes, where a, b and c are primitive vectors of the unit cell. Calculate the Miller indices of the given plane.
- **5.** (a) Deduce the Dulong and Petit's law for the specific heat of solids.
 - (b) Define the following: $1\times3=3$
 - (i) Electron collision
 - (ii) Mean free path
 - (iii) Relaxation time

Or

- (a) State the Wiedemann-Franz law.
- (b) Define Fermi energy and Fermi level. Show that the average energy of an electron in an electron gas at 0 K is $\frac{3}{5}E_F(0)$, where $E_F(0)$ is Fermi energy at 0 K. 2+4=6

 $\star\star\star$

2

4

Subject Code: PHY	/IV/04 (PR)	Booklet No. A			
To be filled in by t		Date Stamp			
DEGREE 4th Semes (Arts / Science / Co	ommerce / am., 2017				
Paper		To be filled in by the Candidate			
INSTRUCTIONS TO	CANDIDATES	DEGREE 4th Semester			
 The Booklet No. of this quoted in the answer descriptive type que versa. 	script meant for	(Arts / Science / Commerce /) Exam., 2017			
2. This paper should be A and submitted within of the commence Examination.	n <u>45 minutes</u>	Roll No			
booklet, any cutting writing or furnishing	While answering the questions of this booklet, any cutting, erasing, overwriting or furnishing more than one answer is prohibited. Any rough work, if required, should be done only on the main Answer Book. Instructions given in each question should be followed for answering that question only.	Subject			
if required, should b the main Answer Bo given in each ques followed for answerin		Descriptive Type Booklet No. B			
Signature of Scrutiniser(s)	Signature of Examiner(s)	Signature of Invigilator(s)			

/333

PHY/IV/04 (PR)

2017

(4th Semester)

PHYSICS

FOURTH PAPER

(Atomic, Nuclear Physics—I and Solid-State Physics—I)

(Pre-revised)

(PART : A—OBJECTIVE)

(*Marks*: 20)

The figures in the margin indicate full marks for the questions

SECTION—A

(*Marks* : 5)

Tick (\checkmark) the correct answer in the brackets provided : $1 \times 5 = 5$

- **1.** The orbital energy of an electron revolving in Bohr's third orbit in a hydrogen atom is
 - (a) -13.6 eV ()
 - (b) -4.53 eV ()
 - (c) -1·51 eV ()
 - (d) -0.85 eV ()

/333

2. Ionization chamber is a

(a) particle accelerator ()

(b) particle detector ()

(c) chamber for producing ions ()

(d) voltmeter ()

3. The dimension of nucleus is approximately

(a) 10^{-14} m ()

(b) 10^{-12} m ()

(c) 10^{-10} m ()

(d) 10^{-8} m ()

4.	The	coordi	natio	n number	of ai	n i.c.	.c. lattio	ce is	
	(a)	4	()					
	(b)	6	()					
	(c)	8	()					
	(d)	12	()					
5.		ratio o al to	of Fe	rmi energy	to 1	Ferm	i tempe	erature	is
	(a)	Boltzm	ann'	s constant		()		
	(b)	Planck	's co	nstant	()			
	(c)	Rydber	g's c	onstant	()			
	(d)	univers	sal co	onstant	()			
PHY/IV/04 (PR) /333									

(4)

SECTION—B

(*Marks*: 15)

Write short answers to the following questions: $3\times5=15$

1. Derive the Einstein's photoelectric equation.

2. Complete the following nuclear reactions:

(a)
$$_{17}\text{Cl}^{35} + ? \longrightarrow _{16}\text{S}^{32} + _{2}\text{He}^{4}$$

(b)
$$_5\mathrm{B}^{10} + ? \longrightarrow _3\mathrm{Li}^7 + _2\mathrm{He}^4$$

(c)
$$_{4}\text{Be}^{9} + _{2}\text{He}^{4} \longrightarrow ? + _{0}n^{1}$$

3. Define controlled and uncontrolled chain reactions. Write one application of each.

(7)

4. Classify the following crystals according to their bonding:

Na; NaCl; Diamond; Cu; KBr; Si

5. Discuss the difference between the assumption of Einstein and Debye's theory of specific heats of solids.

G7—200**/333**