GOVERNMENT ZIRTIRI RESIDENTIAL SCIENCE COLLEGE

Subject: PHYSICS

Paper Name: Atomic, Nuclear Physics-I and Solid State Physics-I
 Paper No: IV
 Semester: $4^{\text {th }}$ Semester

A. Multiple choice questions [25 (5 from each unit)]

1. K_{α} characteristic X -ray refers to the transition of electrons
a) from $n=2$ to $n=1$
b) from $n=3$ to $n=2$
c) from $n=3$ to $n=1$
d) from $n=4$ to $n=2$
2. If an electron in a hydrogen atom jumps from the third orbit to the second orbit, it emits a photon of wavelength λ. When it jumps from the fourth orbit to the third orbit, the corresponding wavelength of the photon will be
(a) $\frac{16}{25} \lambda$
(b) $\frac{9}{16} \lambda$
(c) $\frac{20}{7} \lambda$
(d) $\frac{20}{13} \lambda$
3. If the frequency of $K_{\alpha} \quad$ X-ray emitted from an element with atomic number 31 is v , then the frequency of K_{α} X-ray emitted from another element with atomic number 51 will be
(a) $\frac{25}{9} v$
(b) $\frac{5}{3} v$
(c) $\frac{51}{31} v$
(d) $\frac{9}{25} v$
4. Energy absorbed by electron in photoelectric effect is used in
(a) increasing the kinetic energy
(b) escaping the metal surface
(c) both (a) and (b)

GOVERNMENT ZIRTIRI RESIDENTIAL SCIENCE COLLEGE

(d) increasing the frequency
5. Maximum kinetic energy of the emitted photo-electrons depends on
(a) intensity of incident radiation
(b) frequency of incident radiation
(c) both (a) and (b)
(d) none of the above
6. The relation between nuclear radius and mass number is given by
a) $\quad R=R_{0} A^{\frac{1}{2}}$
b) $R=R_{0} A^{\frac{1}{3}}$
c) $R=R_{0} A^{\frac{1}{4}}$
d) $R=\left(R_{0} A\right)^{\frac{1}{3}}$
7. The electron emitted in the radioactive decay process originates from
(a) inner orbits of atom
(b) free electrons existing inside the nucleus
(c) photons escaping from the nucleus
(d) decay of a neutron inside the nucleus
8. If the nucleus ${ }_{13}^{27} \mathrm{Al}$ has a nuclear radius of 3.6 fm , then the nuclear radius of ${ }_{52}^{125} \mathrm{Te}$ will be
(a) 9.6 fm
(b) 6.0 fm
(c) 4.8 fm
(d) 12.0 fm
9. An Alpha particle consist of
(a) one proton and two neutrons
(b) two protons and one neutron
(c) two proton and two neutrons
(d) one proton and one neutron
10. When beta-decay takes place from a nucleus of charge number (Z) and mass number (A), then for the product nucleus these become respectively
(a) $Z+1, A$
(b) $Z, A+1$
(c) Z-1, A-1
(d) Z, A-1
11. If the Interplaner distance of NaCl crystal is 0.28 nm , then the lattice parameter is
a) 0.14 nm

GOVERNMENT ZIRTIRI RESIDENTIAL SCIENCE COLLEGE

b) 0.28 nm
c) 0.58 nm
d) 0.84 nm
12. In HCP lattice, the effective number of lattice point per unit cell is
a) 7
b) 9
c) 10
d) 12
13. The Interplaner distance $\left(d_{100}\right)$ for (100) plane of BCC is
a) $\frac{a}{\sqrt{2}}$
b) $\frac{a}{\sqrt{3}}$
c) a
d) $\frac{a}{2}$
14. If the packing fraction for a crystal is 74%, then the structure of the crystal is
a) BCC
b) FCC
c) HCP
d) both (b) \& (c)
15. The number of diad axis of symmetry elements that are present in a cubic crystal are
a) 3
b) 4
c) 5
d) 6
16. Every reciprocal lattice vector is
a) Parallel to a lattice plane
b) Normal to a lattice plane
c) Inclined at 45° to a lattice plane
d) Inclined at 180° to a lattice plane
17. In Bragg's reflection for X-ray of wavelength $1 \stackrel{\circ}{A}$, the reflection was found at a glancing angle of 30°. The spacing between the lattice planes is
a) $\sqrt{ } 2{ }^{\circ}$
b) $1{ }^{\circ}$
c) $2 \AA$

GOVERNMENT ZIRTIRI RESIDENTIAL SCIENCE COLLEGE

d) $4{ }^{\circ}$
18. If V and V be the volume of a unit cell in direct and reciprocal lattice, then
a) $V=V^{*}$
b) $V=\frac{V^{*}}{8 \pi^{3}}$
c) $V=8 \pi^{3} V^{*}$
d) $V=\frac{8 \pi^{3}}{V^{*}}$
19. At equilibrium condition of a diatomic molecule, the total force is
a) Minimum
b) Maximum
c) Unity
d) Zero
20. Van der Waal's interaction varies as
a) $\frac{1}{r^{2}}$
b) $\frac{1}{r^{3}}$
c) $\frac{1}{r^{6}}$
d) $\frac{1}{r^{12}}$
21. The value of Madelung constant of NaCl crystal is
a) 1.6381
b) 1.7476
c) 1.7627
d) 1.4766

22. Fermi level is defined as
a) Lowest filled level at OK
b) Highest filled level at OK
c) Lowest filled level at 300 K
d) Highest filled level at 300 K
23. As the temperature approaches absolute zero, the specific heat of solids approaches (a) infinity

GOVERNMENT ZIRTIRI RESIDENTIAL SCIENCE COLLEGE

(b) zero
(c) any value between zero and infinity
(d) None of these
24. The average kinetic energy of an electron in the ground state in one dimension is equal to
(a) $\frac{1}{2} E_{F}$
(b) $\frac{1}{3} E_{F}$
(c) $\frac{1}{4} E_{F}$
(d) E_{F}
(where E_{F} is Fermi energy).
25. The relation between current density (\vec{J}) and electrical conductivity (σ) is given by
(a) $\vec{J}=\sigma / \vec{E}$
(b) $\vec{J}=\sigma \vec{E}$
(c) $\vec{J}=2 \sigma \vec{E}$
(d) $\vec{J}=\sigma^{2} \vec{E}$

B. Fill up the blanks

1. In Hydrogen spectrum, \qquad series is in the UV region.
2. In photoelectric effect, the \qquad is the potential of cathode at which current becomes zero.
3. Compton effect is the \qquad scattering between electron and photon.
4. The time at which the number of radioactive nuclei becomes half of the original number is known as
\qquad period.
5. Nuclear \qquad reaction is the sources of stellar energy.
6. Regular and periodic arrangement of \qquad in space is called Lattice.
7. Only \qquad fold rotation axis of symmetry are possible in a single crystal.
8. Unit Cell description for Triclinic lattice is \qquad and \qquad .
9. The number of lattice points/atoms per unit cell in Diamond Structure is \qquad .
10. Because of the periodic nature of Bravais lattice, each lattice point is surrounded by \qquad of nearest neighbour.
11. The reciprocal lattice vector \vec{a}^{*} is normal to \qquad plane.
12. At sufficiently close separations the overlap energy in inert gas crystal is repulsive, in large part because of the \qquad .
13. According to Debye, specific heat of solids at low temperature varies with absolute temperature(T) as $\mathrm{C}_{v} \propto$
14. Fermi level is defined for any temperature, but Fermi temperature is defined only at \qquad
15. Dulong and Petit's law fails for light elements such as Boron, Carbon, Beryllium etc because the Debye temperature of these elements is \qquad

Key Answers

A. Multiple choice questions

1. (a)
2. (c)
3. (a)
4. (c)
5. (b)
6. (b)
7. (d)
8. (b)
9. (c)
10. (d) 16.(b)
11. (a)
12. (b)
12.(d)
13. (d)
14. (d)
15. (b)
16. (b)
17. (b)
18. (d)
19. (d)
20. (c)
21.(b)
B. Fill up the blanks
21. Lyman
22. stopping potential
23. inelastic
24. half-life
25. fusion
26. geometrical points
27. $1,2,3,4,6$
28. $a \neq b \neq c$ and $\alpha \neq \beta \neq \gamma$
29. 8
30. the same number
31. bc
32. Pauli Exclusion Principle
33. T^{3}
34. Absolute zero
35. Very high

Govt. Zirtiri Res. Science College, Aizawl, Mizoram

