2015

(6th Semester)

PHYSICS

TENTH PAPER

(Nuclear Physics—II)

Full Marks: 75

Time: 3 hours

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

- 1. (a) Explain the terms 'mass defect' and binding energy' of a nucleus.
 - (b) Describe graphically the variation of binding energy per nucleon as a function of mass number of nuclei. From this curve, explain the energy release in nuclear fission and fusion reactions. 3+2=5
 - (c) Calculate the binding energy per nucleon for α -particle, given masses of proton $m_p = 1.007276$ amu, neutron $m_n = 1.008665$ amu and $m_{\alpha} = 4.001506$ amu. [1 amu = 931 MeV]

www.gzrsc.edu.in

3

Or

Establish the semiempirical mass formula and mention the significance of various terms 3+7=10 in it.

- 2. (a) Define 'decay constant' and 'half-life' of a radioactive substance and deduce a relation between them. 2+3=5
 - (b) What is the cause of alpha decay? State and explain Geiger-Nuttall law in alpha decay.

 2+3=5

Or

(a) What are different types of β-decay? Explain each with representative reactions.

(b) Explain the process of γ-emission and nuclear isomerism.

- (a) Derive an expression of Q-value of a nuclear reaction and hence explain exoergic and endoergic reactions.
 - (b) Find the Q-value of the following reaction:

$_3\text{Li}^6 + _0n^1 \rightarrow _1\text{H}^3 + _2\text{He}^4$

Given masses (in amu) of ${}_{3}\text{Li}^{6} = 6.015123$, ${}_{0}n^{1} = 1.008665$, ${}_{1}\text{H}^{3} = 3.016029$ and ${}_{2}\text{He}^{4} = 4.002603$.

G15—250/336a www.gzrsc.edu.in

(Continued)

6

2

Or

(a)	Discuss	Bohr-Wheeler	theory	of	nuclear	6
	fission.					О

- (b) Explain nuclear fusion as the source of stellar energy.
- 4. Describe the construction and working principle of a cyclotron. Obtain the expression for maximum kinetic energy obtained from it.

 6+4=10

Or

Describe the construction and working of a Geiger-Muller counter. What do you mean by 'counter efficiency' and 'dead time' of a GM counter?

8+2=10

- 5. (a) Discuss (i) latitude effect, (ii) altitude effect and (iii) east-west effect in cosmic rays.

 3+3+3=9
 - (b) Write down the names of 6 quarks. 1

Or

- (a) Distinguish between primary and secondary cosmic rays.
- (b) What do you mean by baryon number(B), hypercharge (Y) and strangeness (S)of elementary particles? What is the relation among them?

in one or and true

(a) Peta rava

es Cathodesers

45 * 12 (2) Y (3) 4 (4)

2015 (6th Semester)

PHYSICS

TENTH PAPER

(Nuclear Physics—II)

(PART: A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

Answer all questions

SECTION—A

(Marks: 10)

Put a Tick (✓) mark against the correct answer in the brackets provided: 1×10=10

4. Which of the Educate have a court officer by

1.	Nuclei	having	equal	number	of	neutrons	are	called
----	--------	--------	-------	--------	----	----------	-----	--------

(a)	isotopes	()

(b) isobars ()

(c) isotones ()

(d) isomers ()

2.	The	density of a nucleus is of the order of
	(a)	$10^{16} \text{ kg}/\text{m}^3$
	(b)	$10^{17} \text{ kg}/\text{m}^3$
	(c)	$10^{18} \text{ kg} / \text{m}^3$
	(d)	$10^{19} \text{kg} / \text{m}^3$
3.	As cha	a result of radioactive decay, a $_{92}U^{238}$ nucleus is inged into $_{91}Pa^{234}$ nucleus. The particles emitted
	(a)	one α and one β^- particles ()
	(b)	one α and two β^- particles ()
	(c)	two β^- particles ()
	130 5	two α particles ()
4.	Wh	ich of the following rays are not affected by
	(a)	Alpha rays ()
	(b)	Beta rays ()
	(c)	Gamma rays ()
	(d)	Cathode rays ()

and the state of

5.		high stability of magic number nuclei can be	
	(a)	liquid-drop model ()	
	(b)	shell model ()	
	(c)	collective model ()	
	(d)	alpha particle model ()	
6.	Thr	reshold energy is applicable	
	(a)	only for endoergic reactions ()	
	(b)	only for exoergic reactions ()	
	(c)	for all reactions ()	
	(d)	only for endothermic reactions ()	
7 .	In a	a linear accelerator, the successive tubes har gths proportional to	ve
	(a)	1:2:3:4 (1.50) 2 to 0.00 (2.48 4 500)	
	(b)	$1:\sqrt{2}:\sqrt{3}:\sqrt{4}$ which (1) and has known (
	(c)	1:4:9:16	
	(d)	1:1:1:1 () bor has a owl	

8.	field	machine in which the frequency of the electric list kept constant and the magnetic field is varied, alled
	(a)	cyclotron ()
	(b)	synchrotron ()
	(c)	synchrocyclotron ()
	(d)	betatron ()
9.	Wh	ich of the following particles is a lepton?
	(a)	Proton ()
	(b)	Neutron ()
	(c)	Electron ()
	(d)	Pion ()
10.	A	proton is made up of
	(a)	one u and two d quarks ()
	(b)	two u and one d quarks ()
	(c)	one u and one d quarks ()
	(d)	two u and two d quarks ()

VI/PHY (x)/336

SECTION-B

(Marks : 15)

Answer the following questions:

3-5-15

1. Show that nuclear density is constant for all nuclei.

2. Discuss about radiocarbon dating.

3. Write the elements of a nuclear reactor and their functions.

4. Describe briefly about ionization chamber.

 What are hadrons? Discuss various types of hadron based on their quark structures

...