		NG OUTCOMES
1	MATH/1/CC/111 Calculus	 Assimilate the concepts of a sequence's limit and its convergence. Consider the point at which a function's continuity is tested. Recognize the ramifications of various mean value theorems for differentiable functions. Use Cartesian and polar coordinate systems to draw curves. Derivative tests can be used to solve optimization problems in a wide range of fields, including social sciences, physical sciences, life sciences, and more.
2	MATH/2/CC/121 Algebra	 Recognize groups as mathematical objects. Link the basic notions of groups and symmetries. Explain cosets, normal subgroups, and factor groups. Review Lagrange's theorem. Learn about structure-preserving maps and their effects.
3	MATH/3/CC/231 Differential Equation	 Learn how ordinary differential equations originated. Learn how to solve solvable first-order differential equations and higher-order linear differential equations using various strategies. Obtain consecutive approximations of solutions of first order differential equations passing through a given point in the plane using Picard's approach and Power series method for higher order linear equations using Power series method. Comprehend the general solution concept and discover how to acquire it. Make use of ordinary differential equations to model complex physical, chemical, and biological systems and come up with hypotheses about potential solutions.
4	MATH/4/CC/241 Vector Calculus and Solid Geometry	 Acquire a working knowledge of three- dimensional geometry. Find a particle's location in space. Find the section of conics.

DEPARTMENT OF MATHEMATICS LEARNING OUTCOMES

5	MATH/5/CC/351Computer	• To solve algebraic and transcendental
	Oriented Numerical Analysis	equations numerically
		• Find numerical solutions to linear
		equations and check their accuracy.Learn about interpolation and
		extrapolation.
		 Solve initial and boundary value problems
		in differential equations using numerical methods.
		• Apply various numerical methods in real life problems.
6	MATH/5/CC/352 Real Analysis	• Learn to define sequence in terms of
		functions from R to a subset of R.
		• Calculate the limit superior, inferior, and the limit of a limited sequence.
		• Use the ratio, root, alternating series, and
		limit comparison tests to check for absolute
		convergence of an infinite series of real
		numbers.
		• Learn about Riemann integrable functions and their applications.
7	MATH/5/CC/353 Complex	• Understand the importance of complex
	Analysis	function differentiability and analyticity,
		which leads to the Cauchy Riemann equations.
		• Learn how to evaluate contour integrals
		using the Cauchy Goursat theorem and the Cauchy integral formula.
		• In the fundamental theorem of algebra, use Liouville's theorem.
		• Understand how a power series converges,
		integrates term by term, and differentiates.
		• Learn how to expand analytic functions in
		Taylor and Laurent series, how to
		categorise singularities, poles, and residues, and how to use the Cauchy
		Residue Theorem.
8	MATH/5/CC/354(C) Computer	Have a thorough understanding of the
	Programming in Fortran	FORTRAN programming language.
		• Determine whether scenarios would
		benefit from the use of computational methods and computers.
		• Identify and abstract the programming
		work involved in a computational

		• Based on the problem's needs, select the
		• Based on the problem's needs, select the appropriate data representation formats.
	Practical	 Edit, compile, debug, correct, recompile,
	Tractical	and run the programme on a computer.
9	MATH/6/CC/361: Modern	
9		• Learn the fundamentals of group actions and how to use them.
	Algebra	 Understand the notions of ideals, quotient
		rings, integral domains, and fields, which
		are all important ideas in ring theory.
		 Learn in detail to know about polynomial
		rings, finite field extensions, and finite
		field classification.
10	MATH/6/CC/362: Advanced	• As you progress from one variable to
	Calculus	multiple variables in calculus, you'll notice
		some conceptual changes.
		• In order to solve optimization problems,
		use multivariable calculus.
		• Line integral, double integral, and triple
		integral formulations have
		interrelationships.
		• Multivariable calculus methods have
		applications in physics, economics,
		optimization, and understanding the
		architecture of curves and surfaces in plane
		and space, among other fields.
		• Recognize the significance of Green's,
		Gauss', and Stokes' theorems in other fields
		of mathematics.
11	MATH/6/CC/363: Mechanics	• Familiarize yourself with the subject
		matter, which has served as a nexus for
		mathematicians, physicists, astronomers,
		and engineers.
		• Learn the principles of virtual work for a system of conlaner forces operating on a
		system of coplanar forces operating on a rigid body, as well as the required
		conditions for the equilibrium of particles
		operated upon by multiple forces.
		• Determine the gravitational centre of
		different materialistic systems and consider
		the equilibrium of a uniform wire
		suspended freely under its own weight.
		• Take care of the kinematics and kinetics of
		a particle's rectilinear and planar motions,
		as well as limited oscillatory motions.

12	MATH/6/CC/364(C) Programming in C	Computer	 Have a thorough understanding of the C programming language. Determine whether scenarios would benefit from the use of computational methods and computers. Identify and abstract the programming work involved in a computational challenge. Based on the problem's needs, select the appropriate data representation formats.
	Practical		Edit, compile, debug, correct, recompile, and run
			the programme on a computer.

PROGRAMME OUTCOMES

Students should have understanding of mathematics, physics, and chemistry by the time they graduate from mathematics core. In addition, they should be familiar with basic scientific concepts, principles, and theories and their application in daily life. They should know how mathematics is used in many fields. This includes analysing data and drawing conclusions. They are required to be able to think creatively to explain facts and numbers or to solve difficulties. They should be able to continue their mathematics and computer courses. So they should have worked in various scientific institutions.

PROGRAMME SPECIFIC OUTCOMES

Students majoring in mathematics should comprehend the limit of functions, how to verify continuous function properties and derivatives, and Reimann integrability. They should know how to treat Rings like Euclidean domain and Principal ideal domain, and solve linear and nonlinear equations. They should be able to derive methods for numerous mathematical operations and activities such as interpolation, differentiation, and integration. They should be able to design experiments, analyse and evaluate data, and synthesise knowledge to produce valid conclusions.