				2	0 2 3	3				
				(C	BCS)				
				(5th S	Seme	ster)			
				во	TAN	Y				
				SEVEN	TH P	APE]	R			
		(Cytogene	tics, P	lant Bro	eedin	ıg aı	nd Bi	oinforma	itics)	
				Full M	larks	: 75				
				Time :	3 h	ours				
		The figures in	the ma	argin ind	icate ्	full 1	narks	for the qu	uestions	
			(SEC	CTION:	A —o	BJE	CTIVE)		
				(Mar	ks : 1	10)				
Tick	(√) 1	the correct answe	er in the	e bracke	ts pr	ovide	ed:			1×10=10
1.	Link	ker DNA is assoc	iated v	vith						
	(a)	H1 proteins	()						
		H2 proteins	()						
		H3 proteins	()						
		H4 proteins	()						
2.		nromosome with al arms is know		ntromere	e loca	ted	at the	e centre r	esulting in	n two
	(a)	acrocentric chro	mosom	ie	()				
	(b)	acentric chromo	some	()					
	(c)	metacentric chro	omoson	ne	()				
	(d)	submetacentric	chromo	osome		()			

3. A type of an euploidy where there is loss of two chromosomes $(2n)$ from a non-homologous pair is called					
	(a) double monosomy ()				
	(b) nullisomy ()				
	(c) monoploidy ()				
	(d) trisomy ()				
4.	An organism having more than two sets of chromosomes derived from different species is known as an				
	(a) autopolyploid ()				
	(b) allopolyploid ()				
	(c) autotriploid ()				
	(d) autotetraploid ()				
5.	In genetic maps, map distance is measured in				
	(a) micrometer ()				
	(b) millimeter ()				
	(c) centimeter ()				
	(d) centimorgan ()				
6.	The inheritance of kappa particles in <i>Paramecium</i> is an example of inheritance through				
	(a) nuclear genes ()				
	(b) plastids ()				
	(c) mitochondria ()				
	(d) endosymbionts ()				
7.	If the base adenine is substituted with thymine, this type of mutation is a				
	(a) transversion mutation ()				
	(b) transition mutation ()				
	(c) frameshift mutation ()				
	(d) None of the above ()				

8.	The tendency of F_1 hybrid to show qualities superior to both parents	is
	(a) inbreeding depression ()	
	(b) dominance ()	
	(c) hybrid vigor ()	
	(d) hybridization ()	
9.	The first protein database was created by	
	(a) Margaret Dayhoff ()	
	(b) Paulien Hogeweg ()	
	(c) David Lipman ()	
	(d) William Pearson ()	
10.	BLASTn is a search tool that compares	
	(a) DNA query against a protein database ()	
	(b) DNA query against a DNA database ()	
	(c) protein query against a DNA database ()	
	(d) protein query against a protein database ()	
	(SECTION : B—SHORT ANSWERS)	
	(<i>Marks</i> : 15)	
Writ	te notes on the following :	3×5=15
	Unit—I	
1.	Duplication	
	OR	
2.	Microtubule	
	Unit—II	
3.	Segmental allopolyploidy	
	OR	
4.	Monosomics	
/107	7 3	[Contd.
		-

	Uni	TT—III					
5.	. Multiple allelism						
	OR						
6.	Suppressor gene						
	Uni	IT—IV					
7.	• Pure-line selection						
	OR						
8.	• Transition mutation						
	Uni	NIT—V					
9.	. Gene bank						
	OR						
10.	. FASTA						
	(SECTION : C—DESCRIPTIVE)						
	(Mari	rks: 50)					
Ansv	swer the following questions :	10×5=50					
	Un	NIT—I					
1.	Define chromosome. Write notes composition of chromosome.	s on the structure and chemical					
	OR						
2.	2. Write short notes on the following: 5+5=						
	(a) Types of inversion(b) Translocation						
	(b) Transiocation						
/107	7	4 [Contd.					

T	TN	TТ	1	ГΤ
·	11/1		-	

3. What is an euploidy? Explain monosomy with suitable examples. 2+8=10

OR

4. Briefly describe the following:

5+5=10

- (a) Autopolyploidy
- (b) Sources of chromosomal anomalies

UNIT—III

5. Define karyotype. Describe the uses of karyotype in systematics and evolution studies.

OR

6. Briefly describe the following:

5+5=10

- (a) Kappa particles in Paramecium
- (b) Self-sterility in plants

UNIT-IV

7. Define hybridization. Describe in detail the steps involved in hybridization.

2+8=10

OR

8. Write short notes on the following:

5+5=10

- (a) Any two physical mutagens
- (b) Frameshift mutation

UNIT-V

9. What is a biological database? Give an account on the biological databases available for DNA data. 2+8=10

OR

10. Write short notes on the following :

5+5=10

- (a) BLAST
- (b) Significance of bioinformatics

* * *

/**107** 5 24G—200